STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 30 (PROPOSED SN 016-1819) I-90/94 NB MADSION EXIT RAMP STATION 6348+17.67 TO 6350+71.83 SECTION 2014-016R&B, CONTRACT No. 60X95 IDOT JOB NO. D-91-227-13, IDOT PTB 163-001 COOK COUNTY, ILLINOIS

> for AECOM 303 East Wacker Drive Chicago, IL 60601 (312) 938-0300

submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148 (630) 953-9928

> Original: August 25, 2016 Revised: December 14, 2016

	1 6		
1. Title and Subtitle Structure Geotechnical Re	2. Report Date December 14, 2016		
Retaining Wall 30	3. Report Type ⊠ SGR □ RGR □ Draft ⊠ Final ⊠ Revised		
4. Route / Section / County		5. IDOT Job No./Contract	
FAU 1420/2014-0016R&	B/ Cook	D-91-227-13/60X95	
6. PTB / Item No.	7. Existing Structure Number(s)	8. Proposed Structure Number(s)	
163/001	NA	016-1819	
9. Prepared by	Contributor(s)	Author Phone Number/Email Address	
Wang Engineering, Inc.	Author: Mohammed Kothawala, P.E., D.GE	(630) 953-9928 Ext 1036	
1145 N Main Street	QC/QA: Jerry W. H. Wang, Ph.D., P.E.	mkothawala@wangeng.com	
Lombard, IL 60148	PIC: Corina T. Farez, P.E., P.G.		
10. Prepared for	Structural Engineer	Contact Phone Number	
AECOM	Amish Bhatt, S.E.	(312) 938-0300	
303 East Wacker Drive	AECOM		
Chicago, IL 60601			
11. Abstract			
expressway. The propo	will be constructed as part of the widen osed retaining wall is 255'-0" in length with provided geotechnical recommendations for	a maximum retained height of	
2.5 to 5.0 of stiff silty of to silty clay lake botto followed by very dens drilling within the gran and gravel lenses may	up to 13.0 feet depth of mostly granular fill, clay to silty clay loam and/or up to 44 feet of om deposits over stiff to very stiff silty cla e fine sand and silt to silty loam. The gro nular fill layer at elevation of 585.6 feet (8 also be present within clay deposits. One pind layer indicates the under pressure ground	of very soft to medium stiff clay by to silty clay loam diamicton undwater was observed during .0 feet bgs). Water-bearing silt becometer installed for this wall	
The retaining wall is a	basically a cut wall. Evaluations of different	t types of walls are discussed in	

the report. Design recommendation for the drilled soldier pile wall is included in the report.

Technical Report Documentation Page

12. Path to archived file

S:\Netprojects\11000401\Report\RPT_Wang_MAK_11000401_FinalSGRv01_Wall 30_20161214.pdf

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT DESCRIPTION	1
1.2	PROPOSED STRUCTURE	2
1.3	EXISTING STRUCTURE	2
2.0	SITE CONDITIONS AND GEOLOGICAL SETTING	2
2.1	Physiography	3
2.2	SURFICIAL COVER	3
2.3	Bedrock	3
3.0	EXISTING GEOTECHNICAL DATA	4
4.0	METHODS OF INVESTIGATION	4
4.1	SUBSURFACE INVESTIGATION	4
4.2	IN-SITU VANE SHEAR TESTS	5
4.3	PIEZOMETER INSTALLATION	
4.4	LABORARTORY TESTING	6
5.0	RESULTS OF FIELD AND LABORATORY INVESTIGATIONS	6
5.0 5.1	RESULTS OF FIELD AND LABORATORY INVESTIGATIONS	
		6
5.1	SOIL CONDITIONS	6 8
5.1 5.2	SOIL CONDITIONS	6 8 8
5.1 5.2 5.3	SOIL CONDITIONS GROUNDWATER CONDITIONS SEISMIC DESIGN CONSIDERATIONS	6 8 8 8
5.1 5.2 5.3 6.0	SOIL CONDITIONS GROUNDWATER CONDITIONS SEISMIC DESIGN CONSIDERATIONS ANALYSIS AND RECOMMENDATIONS	6 8 8 9
5.1 5.2 5.3 6.0 6.1	Soil Conditions Groundwater Conditions Seismic Design Considerations ANALYSIS AND RECOMMENDATIONS Retaining Wall Type Evaluation	6 8 8 9 9
5.1 5.2 5.3 6.0 6.1 6.2	Soil Conditions GROUNDWATER CONDITIONS Seismic Design Considerations ANALYSIS AND RECOMMENDATIONS Retaining Wall Type Evaluation Drilled Soldier Pile Wall	6 8 8 9 9 11
5.1 5.2 5.3 6.0 6.1 6.2 6.3	Soil Conditions GROUNDWATER CONDITIONS SEISMIC DESIGN CONSIDERATIONS ANALYSIS AND RECOMMENDATIONS RETAINING WALL TYPE EVALUATION DRILLED SOLDIER PILE WALL RESISTANCE TO DRILLED SHAFTS LATERAL LOADS	6 8 8 9 9 11 12
5.1 5.2 5.3 6.0 6.1 6.2 6.3 6.4	SOIL CONDITIONS GROUNDWATER CONDITIONS SEISMIC DESIGN CONSIDERATIONS ANALYSIS AND RECOMMENDATIONS RETAINING WALL TYPE EVALUATION DRILLED SOLDIER PILE WALL RESISTANCE TO DRILLED SHAFTS LATERAL LOADS GLOBAL STABILITY	6 8 8 9 9 11 12 13
5.1 5.2 5.3 6.0 6.1 6.2 6.3 6.4 6.5	SOIL CONDITIONS GROUNDWATER CONDITIONS	6 8 8 9 9 11 12 13 13
5.1 5.2 5.3 6.0 6.1 6.2 6.3 6.4 6.5 7.0	SOIL CONDITIONS GROUNDWATER CONDITIONS SEISMIC DESIGN CONSIDERATIONS ANALYSIS AND RECOMMENDATIONS RETAINING WALL TYPE EVALUATION DRILLED SOLDIER PILE WALL GROUND MOVEMENT CONSTRUCTION CONSIDERATIONS	6 8 8 9 9 11 12 13 13

7.4	WALL CONSTRUCTION	14
7.6	CONSTRUCTION MONITORING	15
8.0	QUALIFICATIONS	15
REF	FERENCES	16

EXHIBITS

- 1. Site Location Map
- 2. Site and Regional Geology
- 3. Boring Location Plan
- 4. Subsurface Soil Data Profile

APPENDIX A

Boring Logs

APPENDIX B

Laboratory Test Results

APPENDIX C

Global Slope Stability Results

APPENDIX D

TSL Plan

APPENDIX E

Ground Movement Estimates

APPENDIX F

Potential Squeeze of Open Drilled Shafts

STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 30 (PROPOSED SN 016-1819) I-90/94 NB MADISON EXIT RAMP STATION 6348+17.67 TO STATION 6350+71.83 SECTION 2014-016 R&B, CONTRACT 60X95 IDOT JOB NO. D-91-227-13, IDOT PTB 163-001 COOK COUNTY, ILLINOIS FOR AECOM

1.0 INTRODUCTION

This report presents the results of Wang Engineering, Inc. (Wang) subsurface investigation, laboratory testing, and geotechnical engineering evaluations for the proposed wall SN 016-1819 (Retaining Wall 30) along northbound Interstate 90/94 (I-90/94) Madison Exit Ramp in connection with the Circle Interchange Reconstruction project in the City of Chicago, Cook County, Illinois. A *Site Location Map* is presented as Exhibit 1.

The purpose of our investigation was to characterize the site soil and groundwater conditions, perform geotechnical engineering analyses, and provide recommendations for the design and construction of the new retaining wall.

1.1 **Project Description**

The Circle Interchange Reconstruction project is along I-90/94 from south of Roosevelt Road to north of Lake Street, along Interstate 290 (I-290) from Loomis Street to the Circle Interchange; and along Congress Parkway from the Circle Interchange to Canal Street/Old Post Office. The routes typically have three lanes of traffic in each direction with mostly one lane ramp at the interchanges. Locally, the north leg is known as the Kennedy Expressway, the south leg as the Dan Ryan Expressway and the west leg as the Eisenhower Expressway. Within the project area, there are several cross street bridges over I-90/94 and I-290 considered for reconstruction. Along I-90/94, from south to north, the cross street overpasses include Taylor Street, Van Buren Street,

Jackson Boulevard, and Adams Street. Along I-290, from west to east, the cross street overpasses include Morgan Street, Peoria Street, and Halsted Street.

The proposed improvements include additional through lanes in each direction on I-90/94. The horizontal alignments and vertical profiles throughout the interchange will be improved. A new two-lane flyover will be constructed to carry I-90/94 northbound traffic to I-290 westbound. Cross street bridges including, Morgan Street, Harrison Street, Halsted Street, Peoria Street, Taylor Street, Adams Street, Jackson Boulevard, and Van Buren Street will be reconstructed. Various existing ramps will be realigned and reconstructed and up to 50 new retaining walls will be constructed.

1.2 Proposed Structure

Based on the in progress TSL Plan dated August 17, 2016 (Appendix D) provided by AECOM, the proposed retaining wall (SN 016-1819) will be 255'-0" long extending from Station 6348+17.67 to Station 6350+71.83 with 43.33' RT to 46.97' RT feet right offset of I-90/94 NB C-D Road. The wall will start at the existing retaining wall at north edge of the existing siphon or about 33 feet north of Monroe Street east abutment and will extend north along the proposed Madison Exit Ramp. The proposed wall will be a basically cut wall and will have a maximum design height of 12'-1¼".

1.3 Existing Structure

There is no existing retaining wall at this location. There is a parking lot east of the proposed wall and a high rise building approximately 320 feet away from the proposed wall.

2.0 SITE CONDITIONS AND GEOLOGICAL SETTING

The project area is located within the City of Chicago limits. On the USGS *Chicago Loop 7.5 Minute Series* map, the retaining wall is located in the NE¹/₄ of Section 17, Tier 39 N, Range 14 E of the Third Principal Meridian. A *Site Location Map* is presented as Exhibit 1.

The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern

Illinois in general and Cook County in particular. Exhibit 2 illustrates the Site and Regional Geology.

2.1 Physiography

The general topography of the project area slopes gently southeast toward Lake Michigan. The retaining wall is situated within the Chicago Lake Plain Physiographic Subsection. In general the area is characterized by a flat surface, underlain largely by till, which slopes gently toward the lake. The wall runs along the south side of the I-290 exit ramp to Southbound I-90/94 SB between Peoria Street and Halsted Street. The existing grade elevation along the proposed wall alignment is approximately 595 feet.

2.2 Surficial Cover

Within the project area, a 95-foot thick or more, Wisconsinan-age glacial drift covers the bedrock (Leetaru et al. 2004). The glacial cover is made up of clay and silt of the Equality Formation of the Mason Group and diamictons of the Wadsworth and Lemont Formations of the Wedron Group (Hansel and Johnson 1996). The Equality Formation, known informally as the "Chicago Blue Clay", is made up of bedded silt and clay, locally laminated, with lenses and/or thin beds of sand and gravel. The Wadsworth Formation consists of relatively homogenous, massive, gray till with clay to silty clay matrix, with dolostone and shale clasts and occasional lenses of sorted and stratified silt. The Wadsworth Formation is underlined by the pebbly silty clay loam to silty loam diamicton of the Yorkville Member of the Lemont Formation, known informally as the "Chicago hardpan".

From a geotechnical viewpoint, the Equality Formation is characterized by low strength, medium to high plasticity, and medium to high moisture content, whereas the Wadsworth Formation is characterized by low plasticity, medium to low moisture content, medium to very stiff consistency, poor permeability, and low compressibility. The Yorkville Member hardpan is characterized by low plasticity, high blow counts, and low moisture content (Bauer et al. 1991; Peck and Reed 1954).

2.3 Bedrock

In the project area, the glacigenic deposits unconformably rest over a 350-foot thick Silurian-age dolostone (Leetaru et al 2004) at depths ranging from 85 to 100 feet below ground surface (bgs). Only inactive faults are known in the area and the seismic risk to the proposed structure from the existing faults is minimal (Leetaru et al. 2004; Willman 1971). There are no records of mining activity in the area.

Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed that the native sediments consist of clay to silty clay diamicton of the Wadsworth Formation resting on top of more competent silty clay loam diamicton (hardpan) of the Lemont Formation. The borings indicate that the bedrock may be encountered at or below 475 feet elevation.

3.0 EXISTING GEOTECHNICAL DATA

Boring 2054-B-04 performed for the Monroe Street Bridge east abutment and Borings 31-RWB-01 and 31-RWB-02 performed for the proposed Retaining Wall 31 were also used for Wall 30 evaluations.

4.0 METHODS OF INVESTIGATION

The following sections outline the subsurface and laboratory investigations performed by Wang specifically for Retaining Wall 30.

4.1 Subsurface Investigation

The subsurface investigation performed by Wang in July 2014 and December 2015, consisted of three structure borings, designated as 30-RWB-01 through 30-RWB-03, one vane shear strength boring, designated as VST-03, and one Shelby tube boring, designated as 30-ST-01. Moreover one piezometer, designated as 30-PZ-01 was installed. Borings were drilled from elevations 591.4 to 593.6 feet to depths of 57.0 to 113.5 feet bgs.

Northings, eastings, and elevations were surveyed by Dynasty Group, whereas stations and offsets were provided by AECOM. The boring locations are presented in the *Boring Logs* (Appendix A) and in the *Boring Location Plan* (Exhibit 3).

A truck-mounted drilling rig equipped with hollow and/or solid stem augers, was used to advance and maintain an open borehole to 10 to 11 feet and mud rotary drilling techniques to the boring termination depth or top of bedrock. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30 feet bgs and at 5-foot intervals to boring termination depth or top of bedrock. Shelby tube samples were obtained from Borings 30-RWB-01, 30-RWB-03, and 30-ST-01. Soil samples

collected from split-spoon sampler obtained at each interval were placed in sealed jars and transported to Wang Geotechnical Laboratory in Lombard, Illinois for further examination and laboratory testing.

Field boring logs, prepared and maintained by a Wang engineer, include lithological descriptions, visual-manual soil classifications, results of Rimac and pocket penetrometer unconfined compressive strength tests, and results of Standard Penetration Tests (SPT) recorded as blows per 6 inches of penetration. The SPT N value, shown on the soil profile (*Exhibit 4*), is the sum of the second and third blows per 6 inches. The soils were described and classified according to Illinois Division of Highways (IDH) Textural Classification system. The field logs were finalized by an experienced engineering geologist after verifying the field visual classifications and laboratory test results.

Groundwater level observations were made during and at the end of drilling operations. Due to safety considerations the boreholes were backfilled with grout immediately upon completion. Long term groundwater elevations were measured in 30-PZ-01.

4.2 In-Situ Vane Shear Tests

Wang performed vane shear test in Boring VST-03 to determine in-situ strength of very soft to soft clay to silty clay. After drilling to desired depth, casing was installed and vane shear test was performed using M-1000 Vane Borer Test Kit. Tests were performed in undisturbed and remolded conditions.

In general, the vane shear values for soft clays were significantly higher than the corresponding values from unconfined compressive strength tests using the RIMAC apparatus.

4.3 Piezometer Installation

Groundwater encountered during borings is noted on boring logs. However to better understand individual aquifer responses to precipitation events and record long-term water table, monitoring well (piezometer) 30-PZ-01 was installed for the Wall 30. Piezometer was installed in accordance with ASTM D 5092, "*Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers.*" Piezometer installation involved drilling to the water bearing deposit of interest and installing a screened PVC casing within this discrete zone. A washed-sand filter pack was placed in the annular space around the screen and capped by a bentonite plug that isolates the

layer. A solid riser PVC pipe was extended to the ground surface and the remainder of the boring was backfilled.

To ensure that the installation allows for the free flow of groundwater, the piezometer was developed by pumping to remove sediment incorporated in the screen and filter pack during installation. Pumping continued until the piezometer produced the continuous flow of clear water.

Groundwater levels were recorded autonomously at defined intervals by digital pressure loggers suspended within the water column. Barometric affects are compensated by a second in-air pressure logger installed in the riser pipe. Data is retrieved from the loggers periodically, downloaded to a computer for analysis and presentation.

4.4 Laboratory Testing

All soil samples were tested in the laboratory for moisture content (AASHTO T265). Atterberg limits (AASHTO T89 and T90) and particle size analyses (AASHTO T88) tests were performed on selected soil samples representing the main soil layers encountered during the investigation. Shelby tube samples were tested for unconfined compressive strength (AASTHO T208), triaxial unconsolidated undrained compression (AASTHO T296), and triaxial consolidated undrained compression (AASTHO T297). Field visual descriptions of the soil samples were verified in the laboratory. Laboratory test results are shown in the *Boring Logs* (Appendix A), in the *Soil Profile* (Exhibits 4), and in the *Laboratory Test Results* (Appendix B).

The soil samples will be retained in our laboratory for 60 days following this report submittal. The samples will be discarded unless a specific written request is received as to their disposition.

5.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS

Detailed descriptions of the soil conditions encountered during our subsurface investigation are presented in the attached *Boring Logs* (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions.

5.1 Soil Conditions

Borings, drilled at the existing parking lot and ramp encountered 3 to 8 inches of asphalt over 8 to 21

inches of concrete and brick at the surface. In descending order, the general lithological succession encountered includes: 1) man-made ground (fill); 2) stiff silty clay to silty clay loam 3) very soft to medium stiff clay to silty clay; 4) stiff to hard silty clay to silty clay loam; 5) very dense silt to silty loam; and 6) dolostone bedrock.

(1) Man-made ground (fill)

The existing fill is made up of about 6.0 to 13.0 feet of granular fill. The granular fill consists of loose to very dense, black to brown loam to sandy gravel with N-values of 5 blows/foot to over 50 blows for 3 inch sampler penetration and moisture content values of 6 to 24%.

(2) Stiff silty clay to silty clay loam

At elevations of 582.9 to 585.6 feet, Borings 30-RWB-02 and 30-ST-01 encountered 2.5 to 5.0 feet of stiff, brown and gray silty clay to silty clay loam. The layer has unconfined compressive strength (Qu) values of 1.6 to 1.7 tsf and moisture contents ranging from 19 to 27%.

(3) Very soft to medium stiff clay and silty clay (Chicago Blue Clay)

At elevations of about 580.4 to 580.8 feet, the fill and stiff clay rests on top of 36- to 44-foot thick, very soft to medium stiff, gray clay to silty clay. The layer has unconfined compressive strength (Qu) values of less than 0.3 to 0.9 tsf and moisture contents ranging from 23 to 31%. Laboratory index testing shows liquid limit (L_L) values of 32 to 34% and plastic limit (P_L) value of 17%. Laboratory unconfined compressive strength tests show Qu values of 0.48 to 0.56 tsf. As discussed in Section 4.3, undrained shear strength values from vane shear tests are generally higher than Rimac tests. The vane shear tests results are shown in Boring VST-03 and range from 0.37 to 1.68 tsf. According to the AASHTO Soil Classification System, the soil belongs to the A-6 group. This layer is commonly known as the "Chicago Blue Clay."

(4) Stiff to very stiff silty clay to silty clay loam

The very soft to medium stiff clay to silty clay is underlain by stiff to very stiff, gray silty clay to silty clay loam. The unit was encountered at about 47 to 58 feet bgs or 536.8 to 545.1 feet elevation. The Qu values range between 1.0 to 4.2 tsf and moisture contents range between 17 and 28%.

(5) Very dense silt to silty loam (Hardpan)

At depths of 77 to 82 feet bgs or 511.8 to 516.9 feet elevations, Borings 30-RWB-01 and 2054-B-04 encountered up to 30 to 41 feet of very dense, gray silt to silty loam and fine sand. Hard drilling

conditions were observed while drilling in this layer at depth of 110.5 feet bgs. SPT testing shows N-values of 59 to over 50 blows for 3 inch sampler penetration. This layer is commonly known as the "Chicago Hardpan."

(6) Dolostone bedrock

Borings 30-RWB-01 and 2054-B-04 encountered bedrock and cored strong, poor to good quality dolostone at elevation of 475.6 to 482.9 feet. The rock quality designation (RQD) was 21 to 79% with a uniaxial compressive strength value of 10,470 psi.

5.2 Groundwater Conditions

While drilling, the groundwater was encountered at 585.6 feet (8.0 feet bgs) in Boring 30-ST-01 and was not noticed due the mud rotary used from depths of 10 and 15 feet bgs in the remaining borings. Groundwater may also be perched within the granular fill layers. Water-bearing silt and gravel lenses may also be present within clay deposits.

A Piezometer 30-PZ-01 was installed at Madison Street Exit Ramp baseline station 8546+56.94 approximately 30 feet east of the proposed Retaining Wall 30 on November 6, 2014. The screen was placed within gravelly sand layer deposit with the top and bottom of piezometer screen elevations at 503.7 and 493.7 feet (89.5 and 99.5 feet bgs), respectively. The groundwater levels monitored in the piezometer show elevations ranging from 544.1 to 547.6 feet with an average water table elevation of 545.7 feet. The first and last readings were taken on November 21, 2014 and August 2, 2016 respectively for a total of 1240 readings. We are continuing taking readings until further notice. The design and construction of the wall should consider groundwater table encountering under hydrostatic pressure within this granular deposit.

5.3 Seismic Design Considerations

The retaining wall is located in Seismic Performance Zone (SPZ) 1 and is not required to be designed for seismic forces as per 2012 IDOT Bridge Manual (IDOT, 2012).

6.0 ANALYSIS AND RECOMMENDATIONS

The following sections present our engineering evaluations and recommendations for the selection of wall type and geotechnical parameters for the wall design.

6.1 Retaining Wall Type Evaluation

Based on the soil conditions encountered during our investigation, the cast-in-place concrete cantilever (CIP) wall placed on shallow foundation system consisting of spread footings is not suitable due to low bearing resistance. The CIP wall could be supported on driven piles or drilled shafts; however, an additional open cut excavation into the existing slope or a temporary soil retention system will be required to construct the footings. This would also require backfilling and more construction time. Driven piles are not considered due to concern of noise and vibration.

A non-gravity permanent cantilever sheetpile retaining wall will not be an appropriate wall system at this site due to concern of noise and vibration, and driving difficulty in hardpan. A soldier pile and lagging type wall (S-P Wall) is considered. Due to noise and vibration concerns, the piles should be installed in drilled shaft. Soldier piles installed in drilled shaft provide more passive resistance and wider section can be used such as wide flange beam section. Drilled piles may also provide better corrosion protection. Other non-gravity walls such as tangent or secant wall may also be used. The geotechnical parameters developed for drilled soldier pile wall in the following sections can be used.

6.2 Drilled Soldier Pile Wall

Soldier pile and lagging type of retaining wall (S-P Wall) can be considered as a wall installed with a top-down construction method. It should be noted that the proposed slope behind the proposed wall will be 1:3 (V: H).

The design embedment depth of the wall sections should include a minimum FOS of 1.5 against earth pressure failure for walls in the long-term (drained) condition using the soil parameters shown in Table 1. The design of the wall should ignore 3 feet of soil in front of the wall measured from the finished ground surface elevation in providing passive pressure due to excavation required for installation of concrete facing, drainage system and frost-heave condition. In developing the design lateral pressure, the lateral pressure due to construction equipment surcharge load should be added to the lateral earth pressure. Drainage behind the wall and underdrain should be as per 2012 IDOT Bridge Manual (IDOT, 2012). The water pressure should be added to the earth pressure if drainage is not provided. The simplified earth pressure distributions shown in 2014 AASHTO LRFD Bridge Design Specifications should be used. The wall design needs to account for the proposed drainage system. The design should be account for the under pressure groundwater found in the granular layer resting on top of bedrock.

(Borings 30-RWB-01 through 30-RWB-03, VST-03, and 30-ST-01)						
		Drained Shear Strength Earth Pressure				
Lover Flowetions/		Properties		Coefficients ⁽¹⁾		
Layer Elevations/ Soil Description	Unit	Cohesion	Friction	Active	Passive	
Son Description	Weight	(psf)	Angle, φ'	Pressure	Pressure	
	(pcf)		(Degree)			
593.6 ⁽¹⁾ to 584.0					-	
Sandy Loam to Sandy	115	0	30	0.40	2.26	
Gravel Fill						
584.0 to 580.8	115	100	30	0.40	2.26	
Silty Clay Loam	115	100	50	0.40	2.20	
580.8 to 565.0	110	50	27	0.46	1.94	
Clay to Silty Clay	110	30	27	0.40	1.94	
565.0 to 552.0	110	50	27	0.46	1.94	
Clay to Silty Clay	110	30	27	0.40	1.94	
552.0 to 547.0	115	80	29	0.42	2.15	
Clay to Silty Clay	115	80	29	0.42	2.13	
547.0 to 542.0	120	100	30	0.40	2.26	
Clay to Silty Clay	120	100	30	0.40	2.20	
542.0 to 531.0						
Silty Clay to Silty Clay	120	100	30	0.40	2.26	
Loam						
531.0 to 522.0						
Silty Clay to Silty	120	120	30	0.40	2.26	
Loam						
522.0 to 511.8						
Silty Clay to Silty	120	100	30	0.40	2.26	
Loam						
511.8 to 482.0	125	0	36	0.30	3.03	
Silt to Silty Loam	123	0	30	0.50	5.05	

	Table 1: Ear	th Pressure	Parameters	s for Desig	gn of Wall	
orings	30-RWB-01	through 30	-RWB-03,	VST-03,	and 30-ST-01)	

⁽¹⁾ Earth pressure coefficients for 1:3 (V: H) back slope.

⁽²⁾ Existing grade at boring locations.

Normally timber lagging is used between soldier piles. It is possible that upper granular soils with groundwater may not remain stable creating ground loss with voids behind the lagging. Ground settlement behind the wall may occur depending on the severity of the voids and period of time until permanent concrete facing is constructed. Lagging should be placed as soon as possible after excavation to minimize erosion of soil into excavation. Excavation required behind the soldier pile flanges should be the minimum necessary to install lagging. The timber lagging should be installed tight with each other. Any voids developed should be backfilled immediately during construction. If the timber lagging

is to be used the plan should show minimum timber lagging thickness of 3 inches. A Geocomposite Wall Drain should be placed over the timber lagging area in front face of the wall and connected to the 6 inch diameter perforated drain pipe.

As an alternate to timber lagging, secondary drilled shafts can be constructed between the soldier-pile shafts filled with controlled low strength material (CLSM). The construction cost with secondary shafts will be more than timber lagging but will avoid concern regarding ground movement behind the wall. There will be a construction joint between secondary shaft with CLSM and soldier pile shaft above top of permanent casing. There is a possibility of groundwater leakage through this joint if the shafts are not properly constructed. To relive groundwater pressure from behind the wall, holes or perforated PVC pipe should be installed connecting with Geocomposite Wall Drain.

6.3 Resistance to Drilled Shafts Lateral Loads

Lateral loads on drilled shafts for the wall should be analyzed for maximum moments and lateral deflections. Design considerations should include deflection control at the top of the wall. A geotechnical resistance factor of 1.0 should be used. The lateral load capacity analysis should be designed using computer program such as COMP 624P, LPILE, LATPILE or any other programs. The estimated soil parameters that may be used to analyze deflections of drilled shafts under lateral loads are presented in Table 2. The incremental parameters for the soft clay to silty clay (**Layer 2**) undrained shear values were obtained from vane shear testing conducted at Boring VST-03, unconfined compressive strength tests, and triaxial UU and CU tests for the Wall 30.

(Borings 30-RWB-01 through 30-RWB-03, VST-03, and 30-ST-01)						
		Shear Strength Properties			Estimated	
Layer Elevations/ Soil Description	Unit	Short Term		Long	Lateral	Estimated
	Weight			Term	Soil	Soil Strain
		Cohesion	Friction	Friction	Modulus	Parameter,
		Cu	Angle, φ	Angle, φ'	Parameter,	· · · · ·
	(pcf)				k (pci)	E50
		(psf)	(Degree)	(Degree)		
593.6 ⁽¹⁾ to 584.0						
Sandy Loam to Sandy	115	0	30	30	50	
Gravel Fill						
584.0 to 580.8	115	1200	0	30	300	0.009
Silty Clay Loam	115	1200	0	50	500	0.007

Table 2: Recommended Parameters for Lateral Load Analyses of Wall
(Borings 30-RWB-01 through 30-RWB-03, VST-03, and 30-ST-01)

		Shear Strength Properties			Estimated	
Layer Elevations/	Unit	Short Term		Long	Lateral	Estimated
	Weight	<u> </u>		Term	Soil	Soil Strain
Soil Description		Cohesion	Friction	Friction	Modulus	Parameter,
•	(nof)	Cu	Angle, φ	Angle, φ'	Parameter,	E ₅₀
	(pcf)	(psf)	(Degree)	(Degree)	k (pci)	
580.8 to 565.0	-	(psi)	(Degree)	(Degree)	-	-
Clay to Silty Clay	110	390	0	27	30	0.020
565.0 to 552.0	110	590	0	27	100	0.010
Clay to Silty Clay	110	390	0	21	100	0.010
552.0 to 547.0	115	850	0	29	200	0.010
Clay to Silty Clay			Ŷ		200	01010
547.0 to 542.0	120	1300	0	30	350	0.009
Clay to Silty Clay						
542.0 to 531.0	120	1500	0	30	400	0.007
Silty Clay to Silty Clay Loam	120	1300	0	30	400	0.007
531.0 to 522.0						
Silty Clay to Silty	120	2500	0	30	800	0.005
Loam						
522.0 to 511.8						
Silty Clay to Silty	120	2000	0	30	600	0.007
Loam						
511.8 to 482.0	125	0	36	36	110	
Silt to Silty Loam	120	0	20	20		

⁽¹⁾Existing grade at boring locations.

6.4 Global Stability

Global stability analysis was performed at Station 6349+50 for the maximum wall retained height of about 13.1 feet including temporary excavation required for the installation of pipe underdrain in front of the wall. Analysis was performed with *SLIDE Version 6* computer software. Without considering the soldier pile embedment, the minimum factor of safety (FOS) calculated was 1.1 which is less than the minimum required of 1.5 without considering soldier pile embedment. We performed global stability analysis considering pile embedment to obtain FOS of at least 1.5. Our analyses indicate that the pile embedment into the stiff silty clay to silty loam layer to approximate elevation 551 feet will provide a FOS of 1.5. Results of global stability analyses are presented in Appendix C.

6.5 Ground Movement

The anticipated ground settlement behind the wall with respect to the wall deflection was analyzed. There is an existing parking lot behind the proposed retaining wall. Based on the TSL plan, the distance from the proposed retaining wall to the parking lot west side edge is about 17 feet. We considered total retained height of about 13 feet that includes temporary required excavation for facing panels and underdrain installation. Our calculation shows that for 0.25 inches of settlement at the west edge of the parking lot, the wall deflection should be 0.45 inches or less. For 0.55 inches settlement, the wall deflection should be one inch or less. Our calculation results are approximate since it is based on simplified method in published literatures. The calculations with results including method used are included in Appendix E.

To prevent cracking and settlement of the existing parking area, we recommend visual monitoring during construction of the wall. The existing high-rise building is approximately 320 feet from the proposed wall and is expected to be supported on deep foundation.

7.0 CONSTRUCTION CONSIDERATIONS

7.1 Excavation

Any required excavations should be performed in accordance with local, state, and federal regulations including current OSHA regulations. The potential effect of ground movements upon nearby structures and utilities should also be taken into consideration.

7.2 Dewatering

Groundwater level measurements were made in the borings at the time of drilling and monitor in piezometer 30-PZ-01. The granular fill soils may exhibit perched groundwater conditions. These layers may be intercepted during cut shallow excavations. Seepage water that does accumulate in open excavations above groundwater level can be removed using the sump pump method. Intermittent water-bearing layers may also present at deeper levels within the proposed drilled shafts. These layers may locally impact drilled shaft installations; therefore, casing will be required if the interbeds are exposed.

7.3 Filling and Backfilling

All fill and backfill materials should be as per IDOT Standard Specifications.

7.4 Wall Construction

The wall should be constructed as per IDOT Standard Specifications and the current special provisions developed by IDOT for construction of drilled shaft with soldier pile wall.

7.5 Drilled Shaft Construction

The drilled shafts should be constructed in accordance with the IDOT Special Provision *Drilled Shafts* (GBSP No. 86). Drilled shaft installation procedure should be reviewed and approved by IDOT.

The groundwater is expected to be located within the granular fill soils layer. As a minimum, casing will be required in the upper surficial granular fill soils extending into clay to prevent groundwater from entering the shafts and prevent loss of ground around the shafts. The casing should be socketed a few feet into the clay soil to effectively seal the groundwater infiltration into the drilled shafts. Special care should be taken to prevent loss of ground during shaft installation adjacent to the existing buried utilities. It is recommended to advance the casing ahead of the excavation operation. Groundwater is also expected from granular soil layers within very stiff to hard clay deposit and above the bedrock. Drilled shafts extending through and into these granular soils will require casing or a slurry method of excavation.

Our analysis shows potential for the soft clay squeezing if the drilled shafts are left open without casing. We recommend that during the construction temporary casing to elevation 540.0 should be provided or slurry method should be used. Our calculations for squeezing potential are included in Appendix F including method used.

If the casing is not used or concreting in wet shafts, the structural integrity of concrete shaft should be verified by non-destructing integrity testing using the Crosshole Sonic Logging (CSL) method. The IDOT special provision "Crosshole Sonic Logging" dated March 9, 2010 or latest edition should be included for this inspection and testing requirements. Wang recommends providing CSL in one drilled shaft for every five soldier-pile drilled shafts.

7.6 Construction Monitoring

Construction monitoring is discussed in Section 6.5 of this report. Additional construction monitoring should be as per the IDOT Standard Specifications for Roadway and Bridge Construction and special provisions.

8.0 QUALIFICATIONS

The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of the wall are planned, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist AECOM and the Illinois Department of Transportation on this project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

WANG ENGINEERING, INC.

ulaio Hadala

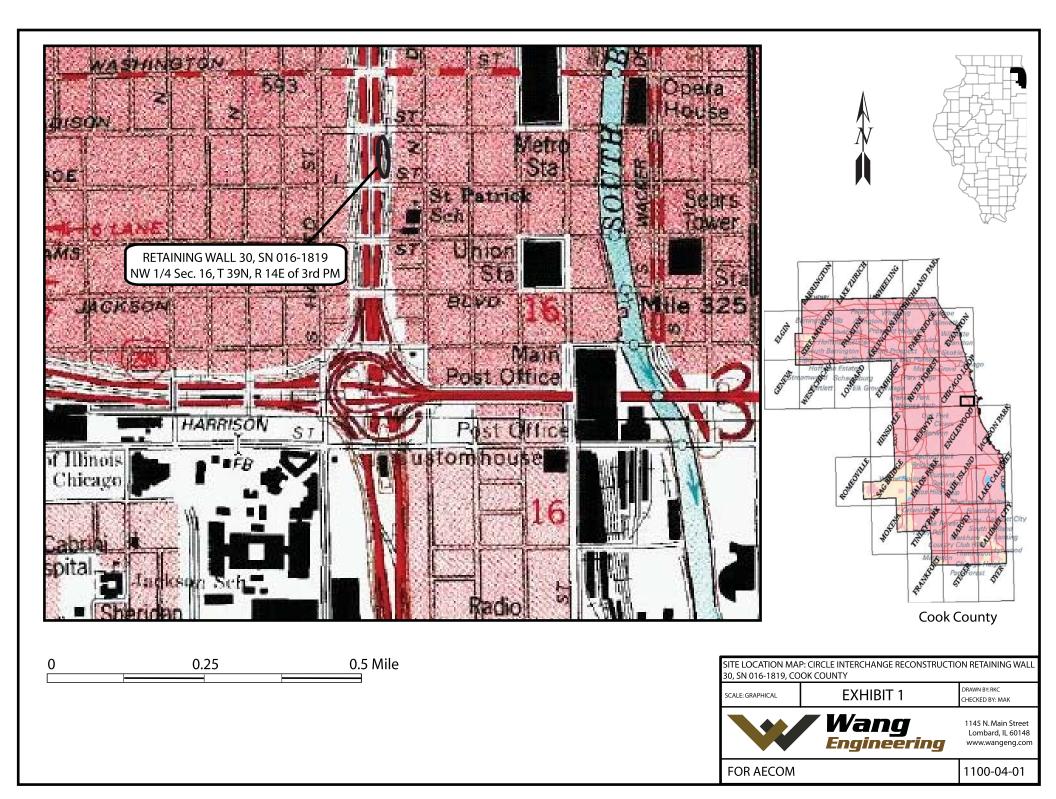
Mohammed A. Kothawala, P.E., D.GE Senior Geotechnical Engineer

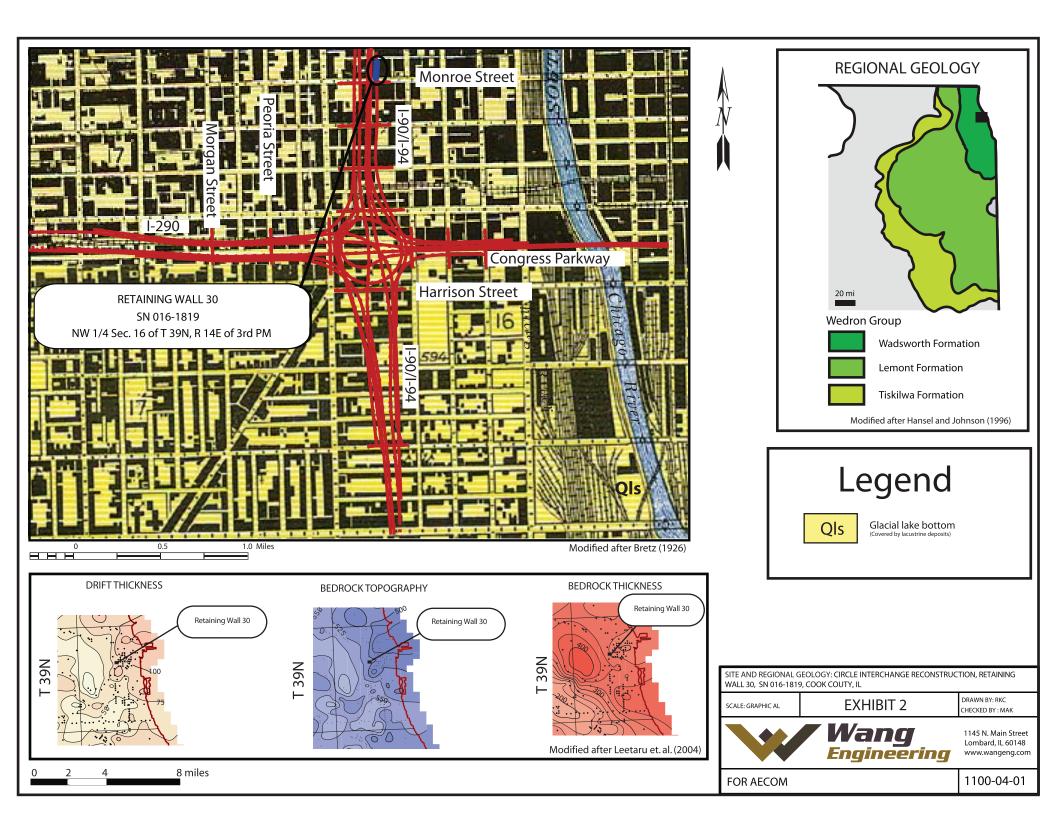
Liconse Expires: 11-30-2017

Jenny WH Wangler

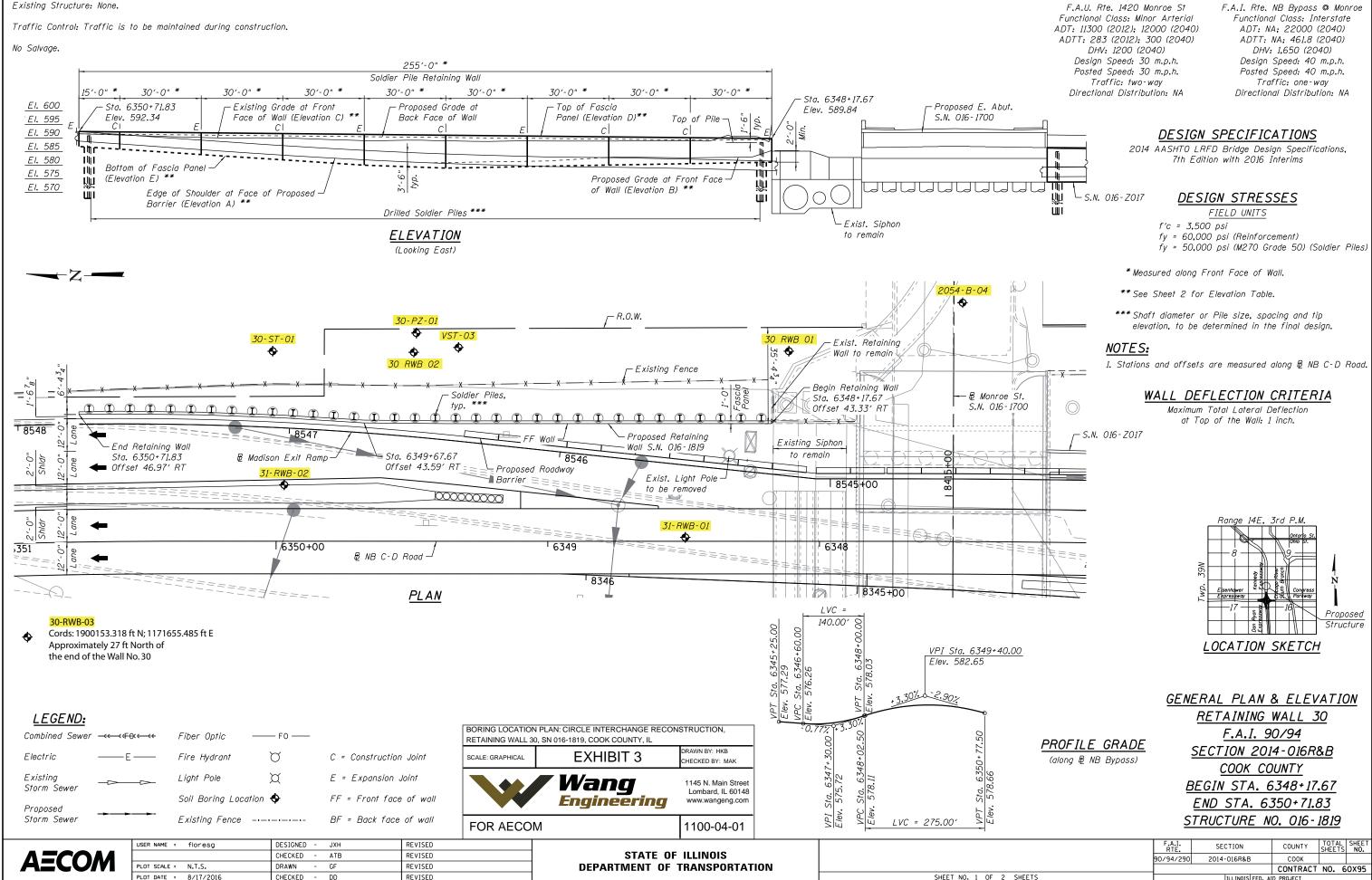
Jerry W.H. Wang, PhD., P.E. QA/QC Reviewer

REFERENCES

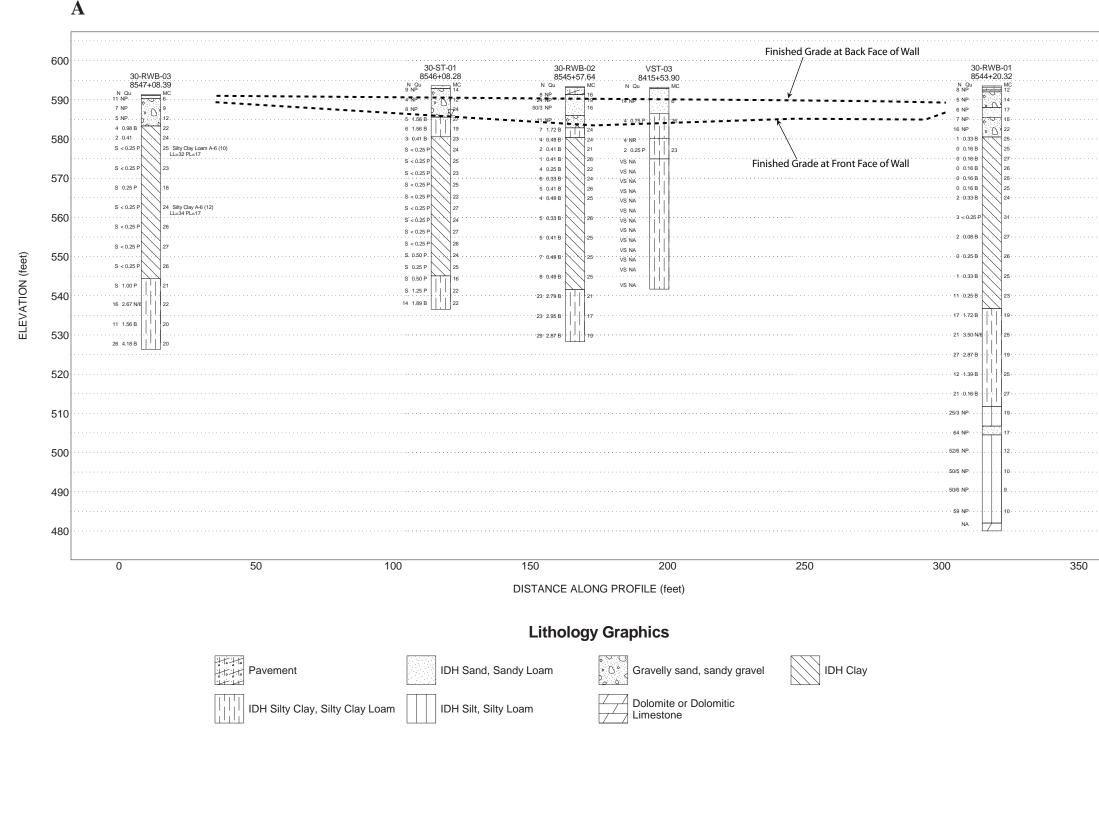

- AMERICAN ASSOCIATION OF STATE HIGHWAY TRANSPORTATION OFFICIALS (2015) *LRFD Bridge Design Specifications*. United States Department of Transportation, Washington, D.C.
- BAUER, R.A., CURRY, B.B., GRAESE, A.M., VAIDEN, R.C., SU, W.J., and HASEK, M.J., 1991, Geotechnical Properties of Selected Pleistocene, Silurian, and Ordovician Deposits of Northeastern Illinois: Environmental Geology 139, Illinois State Geological Survey, 69 p.
- HANSEL, A.K., and JOHNSON, W.H. (1996) Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area: ISGS Bulletin 104.
 Illinois State Geological Survey, Champaign, IL. 116 p.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2015) *Geotechnical Manual*. IDOT Bureau of Materials and Physical Research, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2016) Standard Specifications for Road and Bridge Construction. IDOT Division of Highways, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2012) *Bridge Manual*. IDOT Bureau of Bridges and Structures, Springfield, IL.
- LEIGHTON, M.M., EKBLAW, G.E., and HORBERG, L. (1948) *Physiographic Divisions of Illinois*. The Journal of Geology, v. 56, p. 16-33.
- University of Illinois, Bulletin No.423, Engineering Propoerties of Chicago Subsoils
- CLOUGH, W. F and O' ROURKE. T. M (1990), *Construction Induced Movements of Insitu Walls*. The Journal of American Society of Civil Engineers, p. 439 - 470.
- WANG, J. H, XU. Z.H, and WANG W.D (2010), *Shanghai Soft Soils*, The Journal of American Society of Civil Engineers, p. 987 993.
- BUDIMAN.J, KIEFER. T.A, and BAKER JR. C. N, *Potential Squeeze of Open Drilled Shafts in Soft Clay*, GSP 132 Advances in Deep Foundations, p. 1-15.



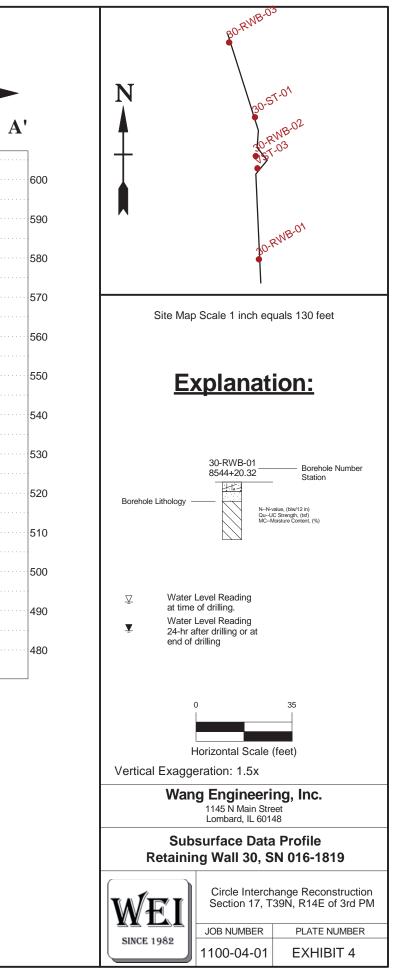
1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com


EXHIBITS

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

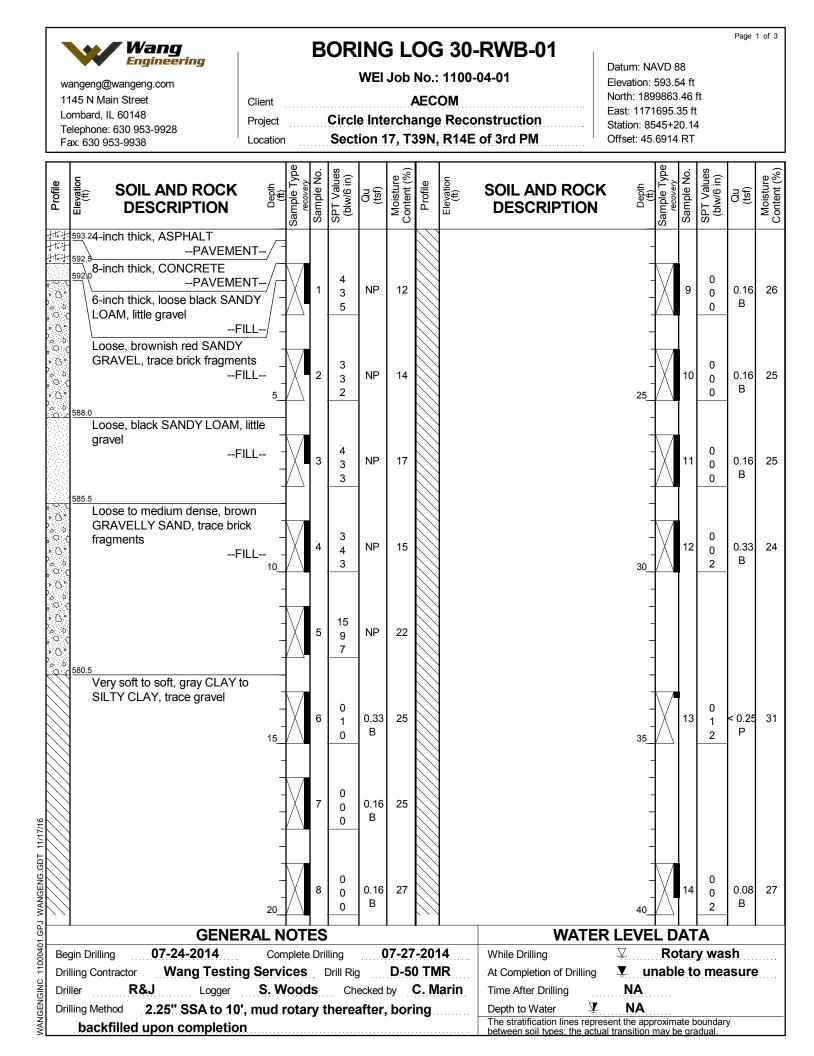


Bench Mark: Chisel "X" on east side of I-90 ±80' S of Monroe Street on SE corner of Handhole on concrete. Elevation 578,58'.


HIGHWAY CLASSIFICATION

 $\triangleleft N$

EI 11X17 11000401.GPJ WANGENG.GDT 8/17

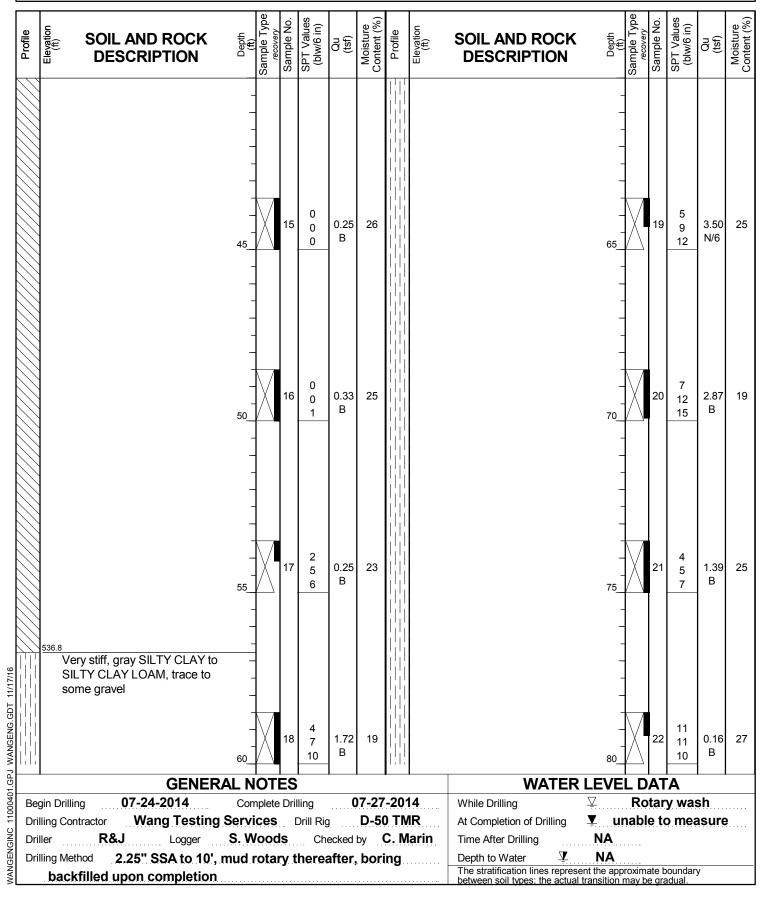

 $S \triangleright$

APPENDIX A

 $S: \times SGRs \$

BORING LOG 30-RWB-01

WEI Job No.: 1100-04-01

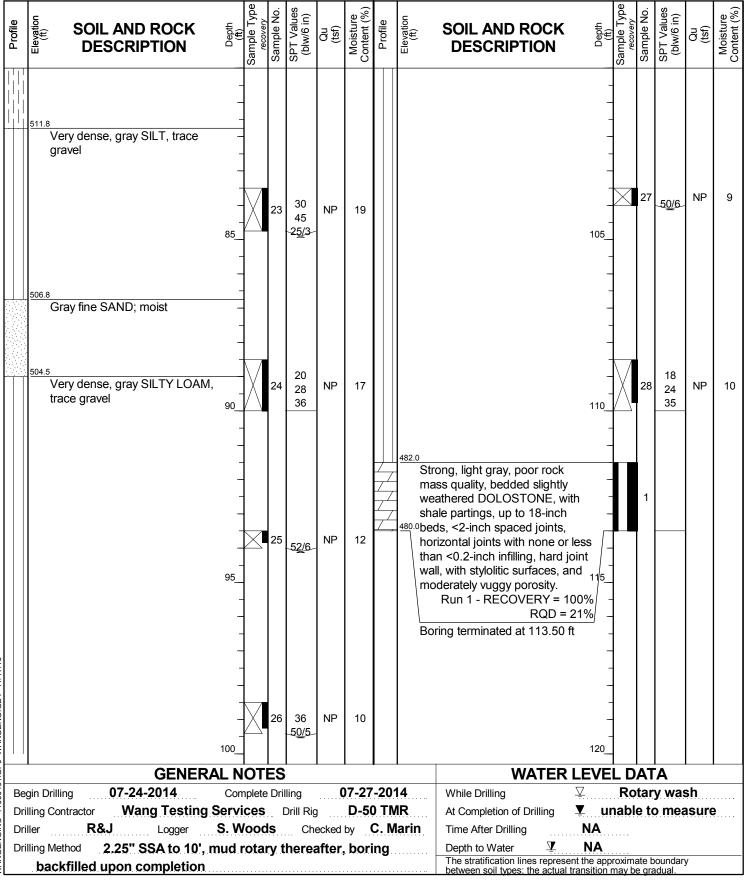

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Datum: NAVD 88 Elevation: 593.54 ft North: 1899863.46 ft East: 1171695.35 ft Station: 8545+20.14 Offset: 45.6914 RT

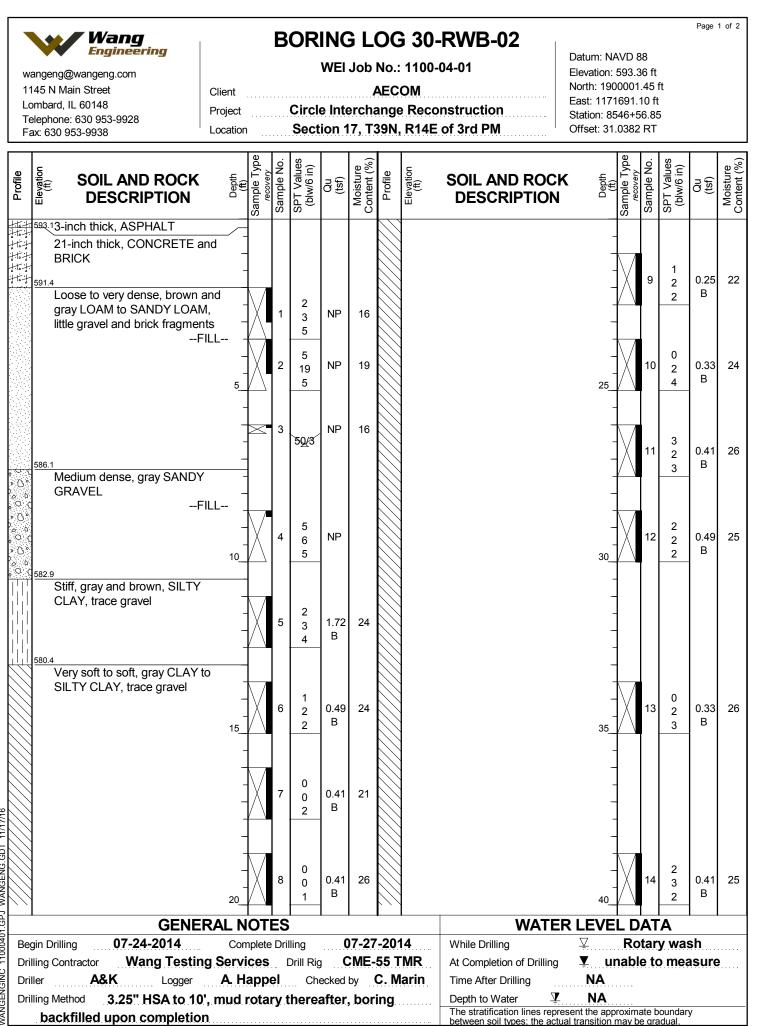
Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location


BORING LOG 30-RWB-01

WEI Job No.: 1100-04-01

Datum: NAVD 88 Elevation: 593.54 ft North: 1899863.46 ft East: 1171695.35 ft Station: 8545+20.14 Offset: 45.6914 RT

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

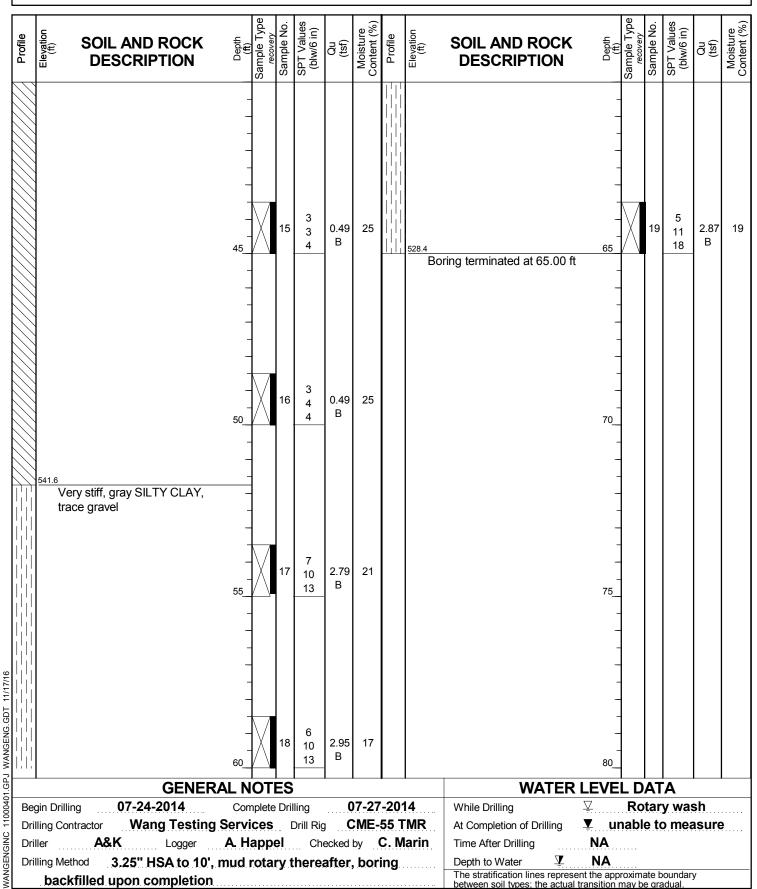

AECOM Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

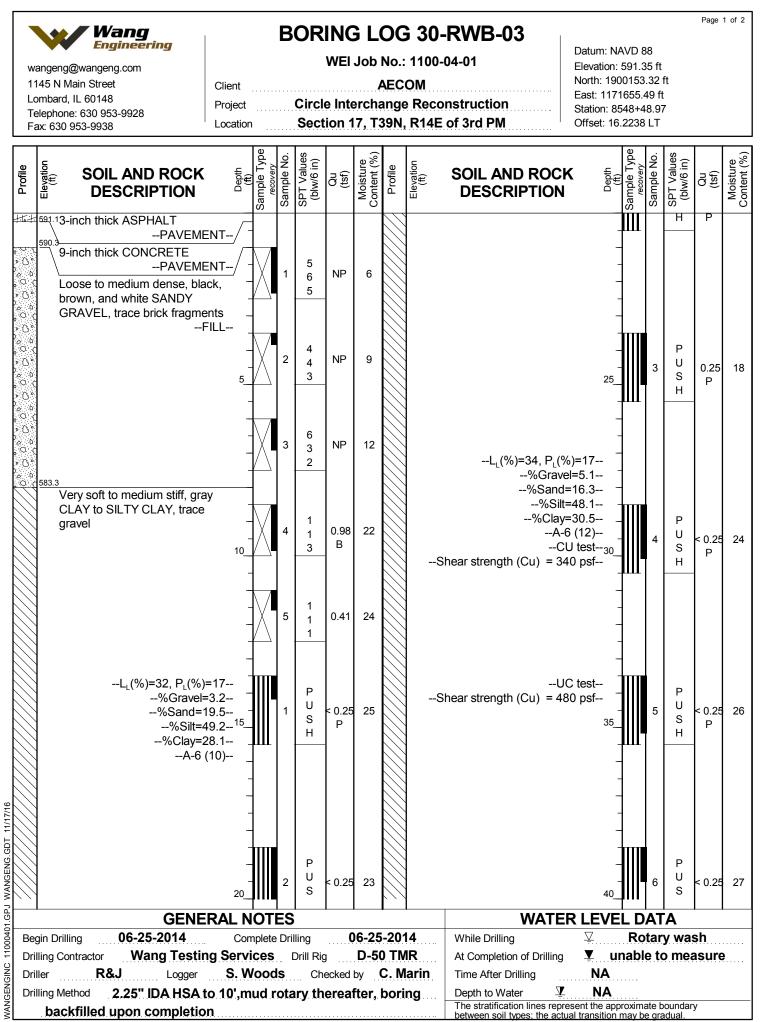
WANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16

Page 3 of 3

VANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16

BORING LOG 30-RWB-02


WEI Job No.: 1100-04-01


Page 2 of 2

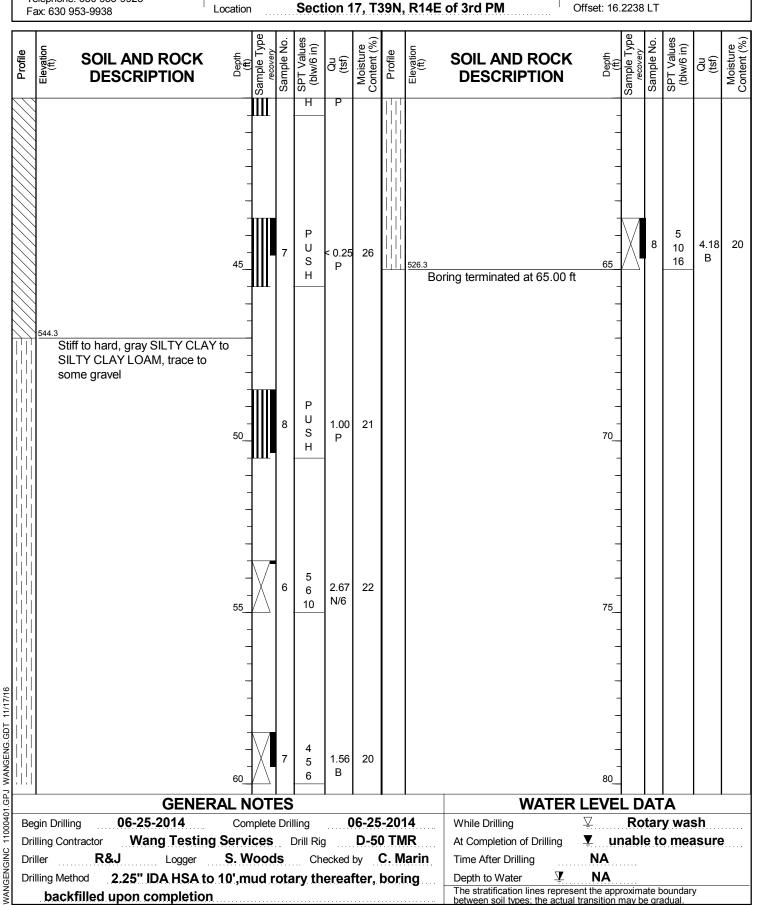
wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

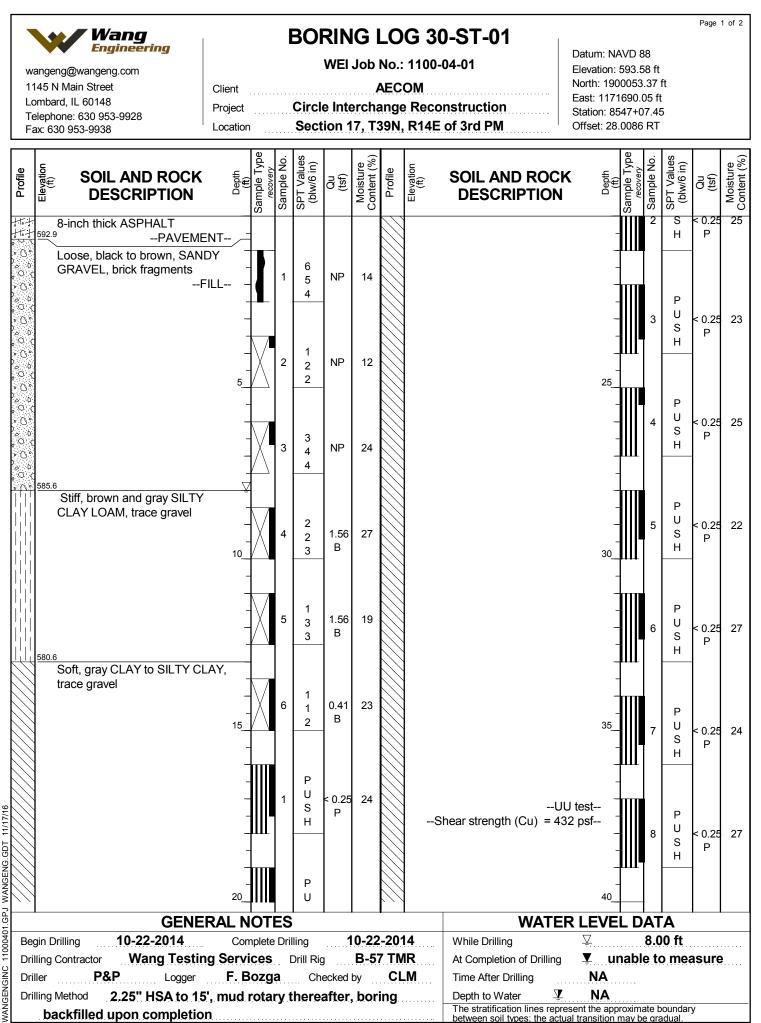
Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.36 ft North: 1900001.45 ft East: 1171691.10 ft Station: 8546+56.85 Offset: 31.0382 RT

Client

Project


BORING LOG 30-RWB-03


WEI Job No.: 1100-04-01

Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Datum: NAVD 88 Elevation: 591.35 ft North: 1900153.32 ft East: 1171655.49 ft Station: 8548+48.97 Offset: 16.2238 LT

Client

BORING LOG 30-ST-01

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Datum: NAVD 88 Elevation: 593.58 ft North: 1900053.37 ft East: 1171690.05 ft Station: 8547+07.45 Offset: 28.0086 RT

Project **Circle Interchange Reconstruction** Telephone: 630 953-9928 Section 17, T39N, R14E of 3rd PM Location Fax: 630 953-9938 SPT Values (blw/6 in) Values Sample No Elevation (ft) Sample No SPT Value (blw/6 in) Moisture Content (% Moisture Content (% Elevatior (ft) Profile Profile SOIL AND ROCK Depth (ff) SOIL AND ROCK Depth (ff) Qu (tsf) Qu (tsf) Sample Sample . DESCRIPTION DESCRIPTION --UU test--Р --Shear strength (Cu) = 432 psf-υ 0.25 26 S Ρ н Ρ U 0.50 24 0 S Ρ Н 45 Р U 0.25 25 S Ρ н Stiff, gray SILTY CLAY, trace gravel Ρ --UC test----Shear strength (Cu) = 560 psf- 50 U 0.50 16 12 S Ρ Н --UC test--Ρ --Shear strength (Cu) = 1790 U 1.25 22 psf--S Ρ Н 55 4 1.89 22 6 В 8 536.6 Boring terminated at 57.00 ft WANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16 60 WATER LEVEL DATA **GENERAL NOTES** 10-22-2014 10-22-2014 8.00 ft **Begin Drilling** Complete Drilling While Drilling ∇ Wang Testing Services Drill Rig **B-57 TMR** unable to measure **Drilling Contractor** At Completion of Drilling Ţ Driller P&P Logger F. Bozga Checked by CLM Time After Drilling NA **Drilling Method** 2.25" HSA to 15', mud rotary thereafter, boring Depth to Water V NA The stratification lines represent the approximate boundary backfilled upon completion between soil types; the actual transition may be gradual

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

Profile		INT.	L AND ROCK	Depth (ft) Sample Type	recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRII		Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
		E	Drilled without sampl	- ing - - - -									-					
				- 5 - -									 25 					
		deve	ter stabilized water readin reading during lopment (11/21/201 48.90 feet b ding date: 12/11/20 48.45 feet b	ng well 4) = ogs 14 =									- - - - 30_ -					
				_ _ _ _ _ 15						Ir B T T	ezometer Data: nstalled in Nov. Bentonite Seal 8 Top of Sand Pac Top of Screen at Bottom of Screer	5 to 87.5 feet k at 87.5 feet 89.5 feet	 35					
WANGENGING 11000401.GPJ WANGENG.GDI 11/17/16																		
				20							1		40					
-01.G				RAL NO								WATER L						
10004		gin Drilling	11-05-2014	Comple		-		1-06			While Drilling	Ź				00 ft		
		lling Contractor ller P8	Wang Testing	g Service F. Boz		-		B-57 by			At Completion Time After Drill	•	hour		3Z.(00 ft		
			4.25" HSA, moni								Depth to Water							
NANG	וויט		4.25 NSA, 111011			WEII				• • • • • • • •	The stratification between soil type	n lines represent	the app	roxim	ate b	oundary	/	

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

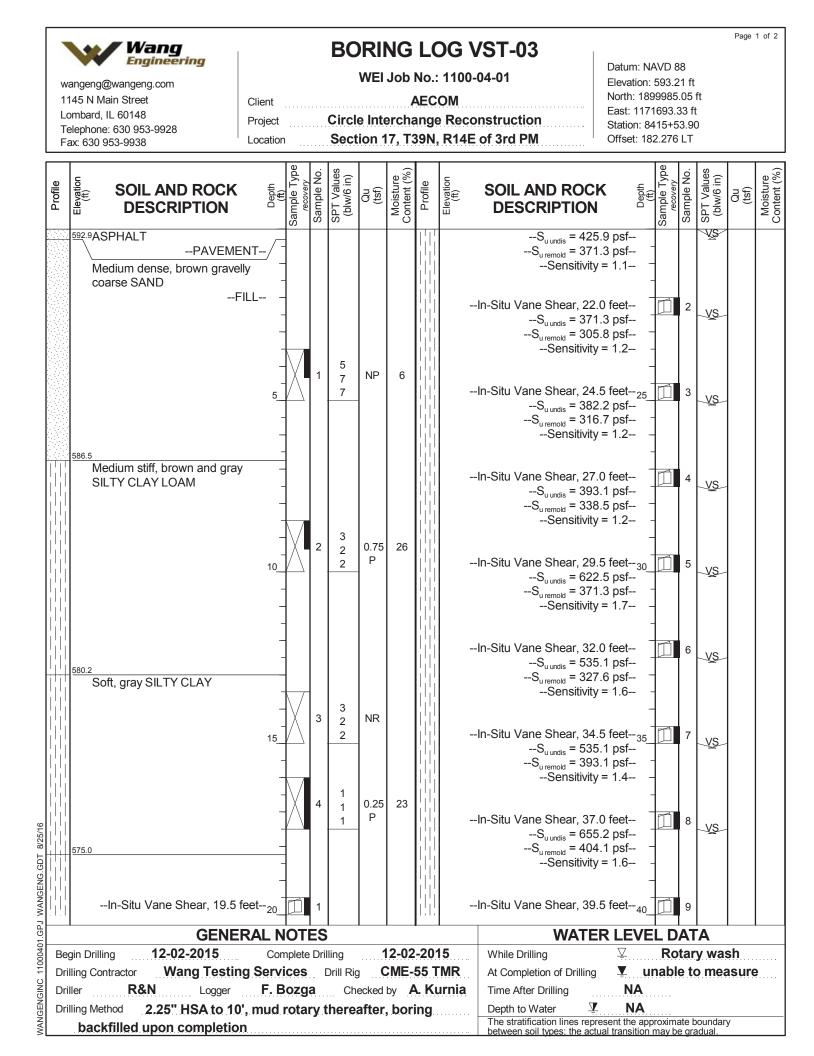
Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

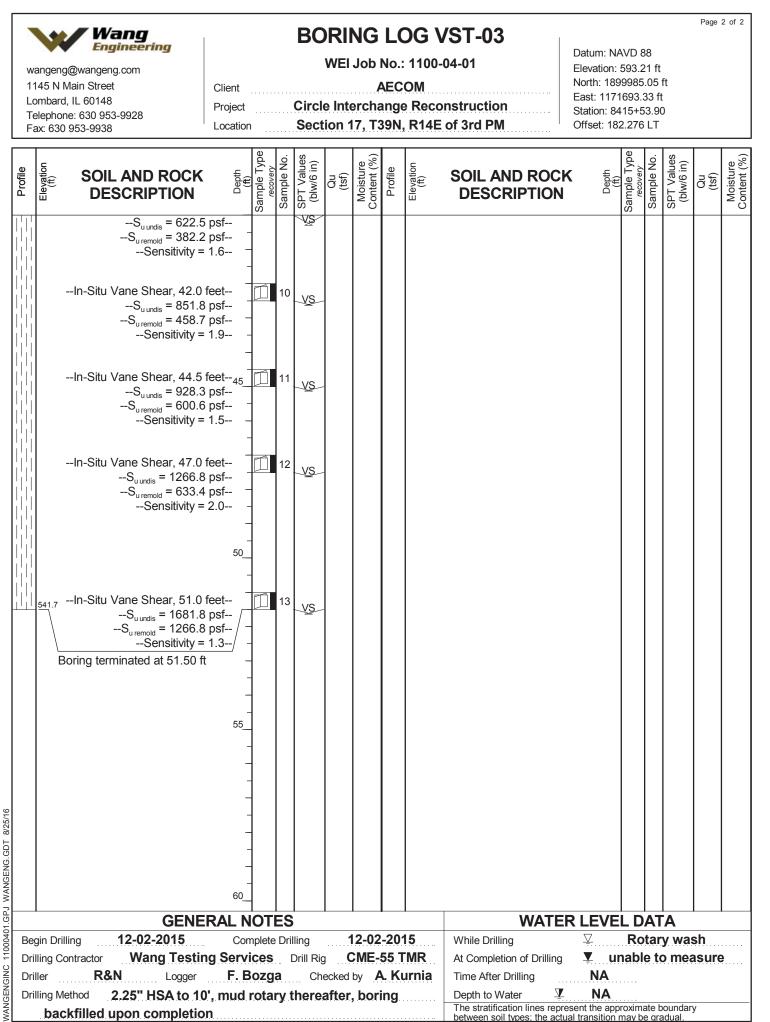
F	ax. 030 s	953-9938	LUCATION			0000						011301. 00.					
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Samula Tvina	covery	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
			-									-					
			-														
												-					
			- 45 -									- 65					
			-									-					
			- \[\[\]									-					
			_ _ 50									 70					
			-									-					
			-									-					
			-									-					
			55									75 _					
011	р	iezometer stabilized water readi										-					
Be Dr Dr		reading during development (11/21/20 48.90 feet t reading date: 12/11/20 48.45 feet t	well - 4) = - ogs 14 = _									- - - 80					
5		GENE		т	ES					I	WATER	LEVE	L D	AT	Α		
Be	gin Drillir		Comp				1	1-06	-201	4	While Drilling	<u> </u>			00 ft		
Dr	illing Cor	-	-			Drill Rig	J	B-57			At Completion of Drilling	T		32.(00 ft		
Dr	iller	P&P Logger	F. Bo				ecked		CL			24 hour					
Dr	Drilling Method 4.25" HSA, monitoring water well						62.20 ft ent the app		ate b	oundar	y						
											The stratification lines represe between soil types: the actual	I transition r	nay b	e gra	adual.	•	

Client

Project

BORING LOG 30-PZ-01


WEI Job No.: 1100-04-01


Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

Telephone: 630 953-9928 Fax: 630 953-9938 Location Section 17, T39N, R14E								of 3rd PM	Offset: 38.18	896 RT	
Profile	SOIL AND ROCK	Depth (ft) Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION	Depth (ff) Samula Tuna	Sample Type recovery Sample No. SPT Values (blw/6 in)	Qu (tsf) Moisture
	Piezometer Data: Installed in Nov. 5, 2014 Bentonite Seal 85 to 87.5 fe Top of Sand Pack at 87.5 fe Top of Screen at 89.5 feet Bottom of Screen at 99.5 fe	eet –									
	501.5	Wet90	20 21 21	NP	16						
		Y - Wet 95 - 2	36 35 20	NP	8						
	493.2 Boring terminated at 100.00	100 ft RAL NOTES Complete Dr		NP	6 1-06	-201		WATE While Drilling	:R LEVEL ⊻	. DATA 48.00 ft	
Dri	• •	ng Services F. Bozga	Drill Rig Ch) ecked	B-57 by	7 TN CL	ir .M	At Completion of Drilling Time After Drilling	 24 hours 2 62.20 ft	32.00 ft	y

BORING LOG 2054-B-04

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 8415+71.14 Offset: 3.191 RT

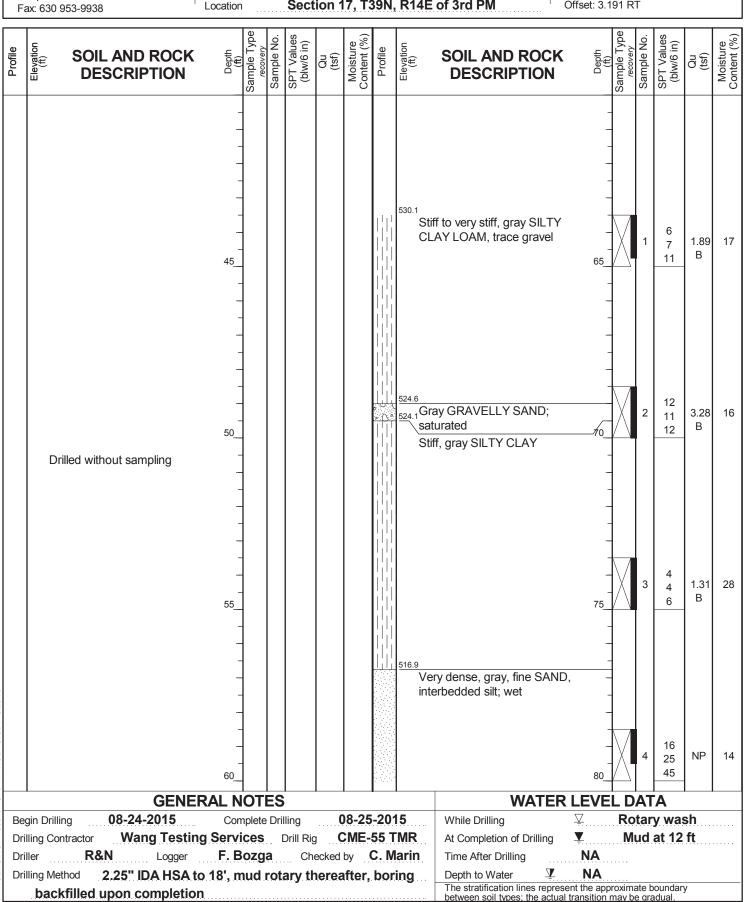
Profile		L AND ROCK SCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
4 4	593.0 7-inch thi	ck CONCRETE															
°0°		PAVEMENT-	-/									-					
°_°	Construct	tion debris	-									-					
۰ () ه	h	ard drilling, 1 to 12 feet-										-					
°0°		possible cobbles-										-					
,0°0			_									_					
° () «												-					
。 。 。 。 。			5									- 25					
,0°0			_														
۰ () •												-					
° ° °			-									-					
° ° °			_									-					
۰ () ه			_									-					
。 。 。 。	Drilled wit	hout sampling	-									-					
			_									-					
۰°،			10									30					
° ° °			-							Dri	illed without sampling	-					
			-									-					
	581.6		_									_					
	Drilled wit	hout sampling	_									-					
			-									-					
			_									-					
			_									-					
			15									35					
			_									-					
			_									-					
												-					
			-									-					
			_									-					
			-									-					
			_ 20									- 40					
											WATER			⋈	Λ		
Bee	Begin Drilling 08-24-2015 Complete Drilling 08-25-2015								5	While Drilling	VEVE V			A y was	sh		
	Drilling Contractor Wang Testing Services Drill Rig CME-55 TMR									At Completion of Drilling	<u> </u>		-	at 12			
Dri	ller R &	&N Logger	F. B	ozg	а	Che	ecked	by (C. M	arin	Time After Drilling	NA					
Dri	Drilling Method 2.25" IDA HSA to 18', mud rotary thereafter, boring								ing	Depth to Water	NA ent the app	rovim	ate h	oundar	,		
	backfilled	upon completion									The stratification lines represe between soil types; the actual	I transition	may be	e ara	dual.		

Page 1 of 4

BORING LOG 2054-B-04

WEI Job No.: 1100-04-01

Page 2 of 4


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

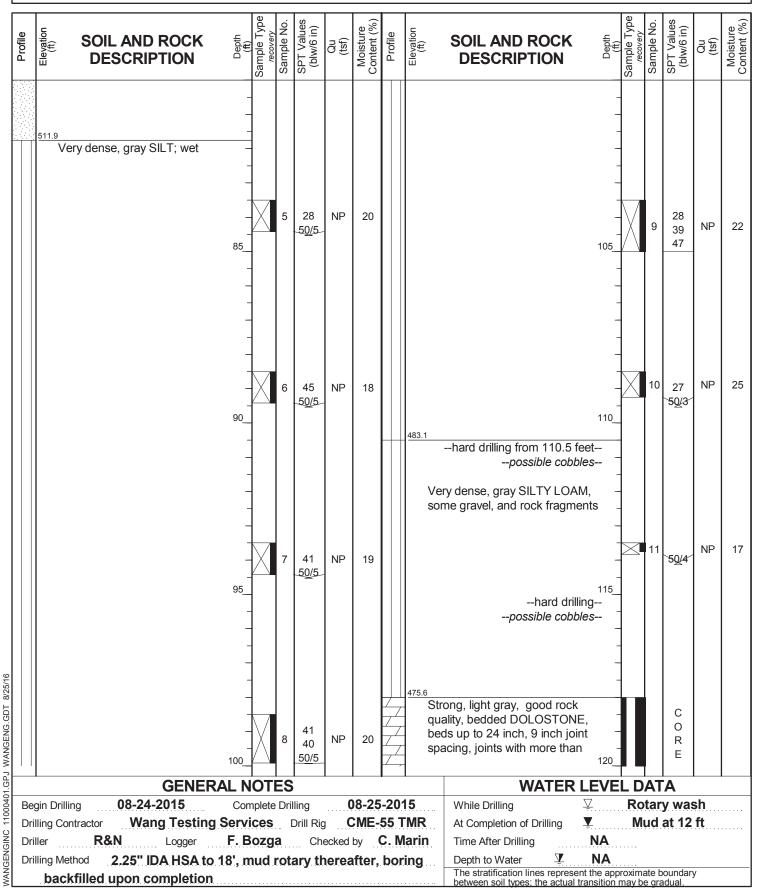
 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 8415+71.14 Offset: 3.191 RT

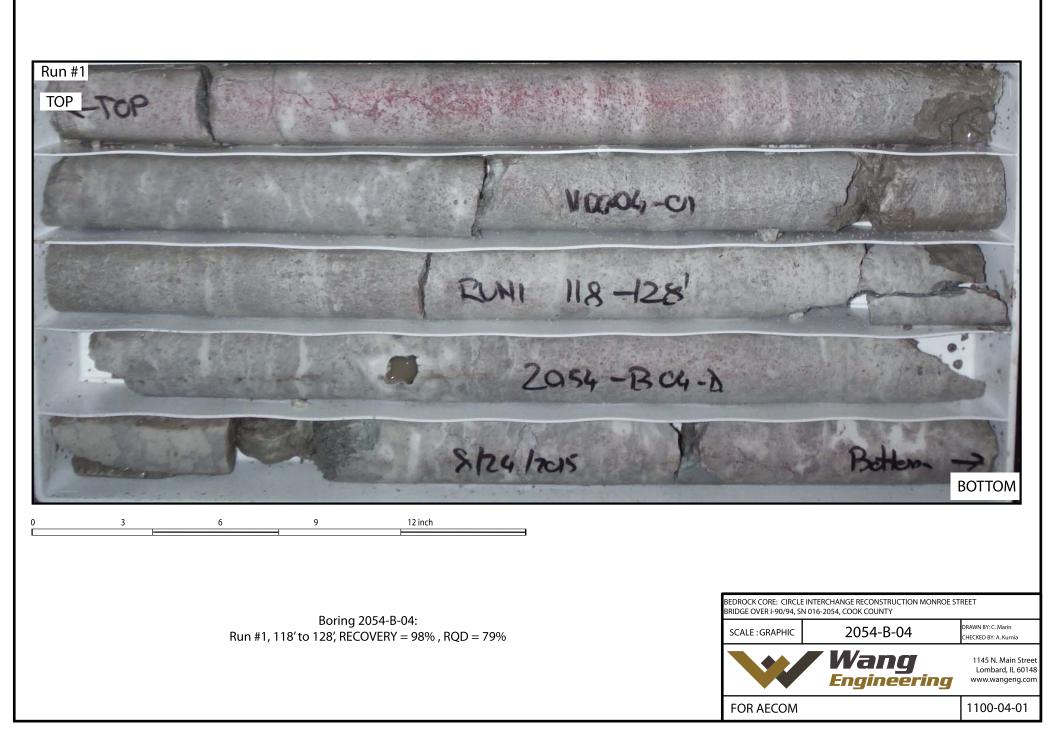
BORING LOG 2054-B-04

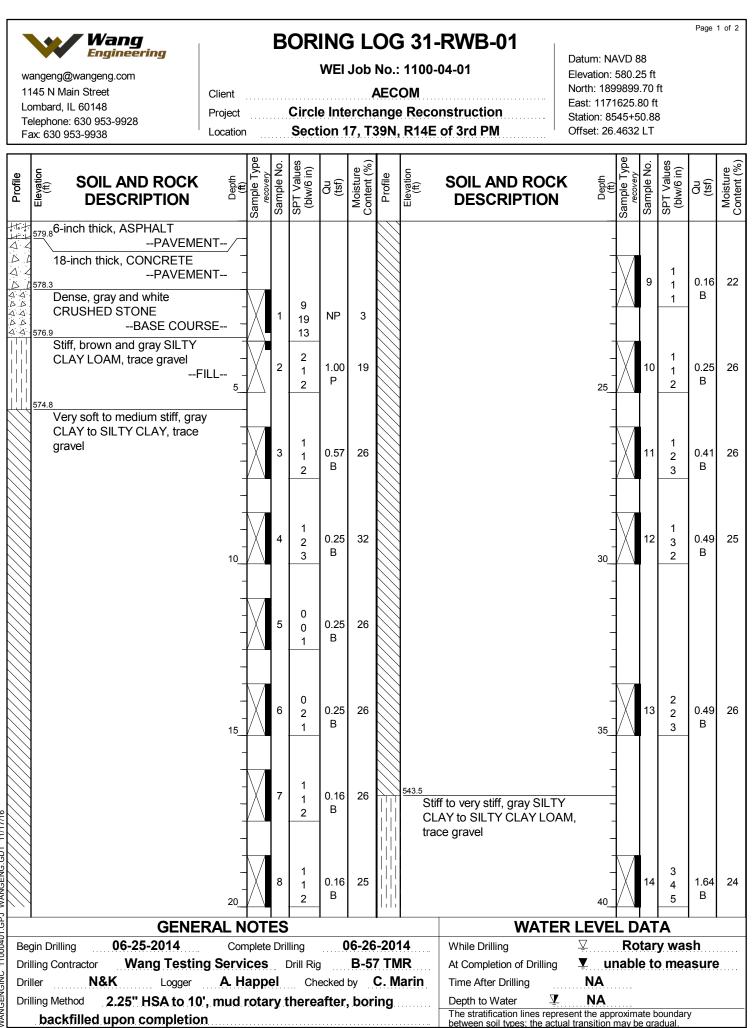
WEI Job No.: 1100-04-01

Page 3 of 4


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM


 Project
 Circle Interchange Reconstruction


 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 8415+71.14 Offset: 3.191 RT

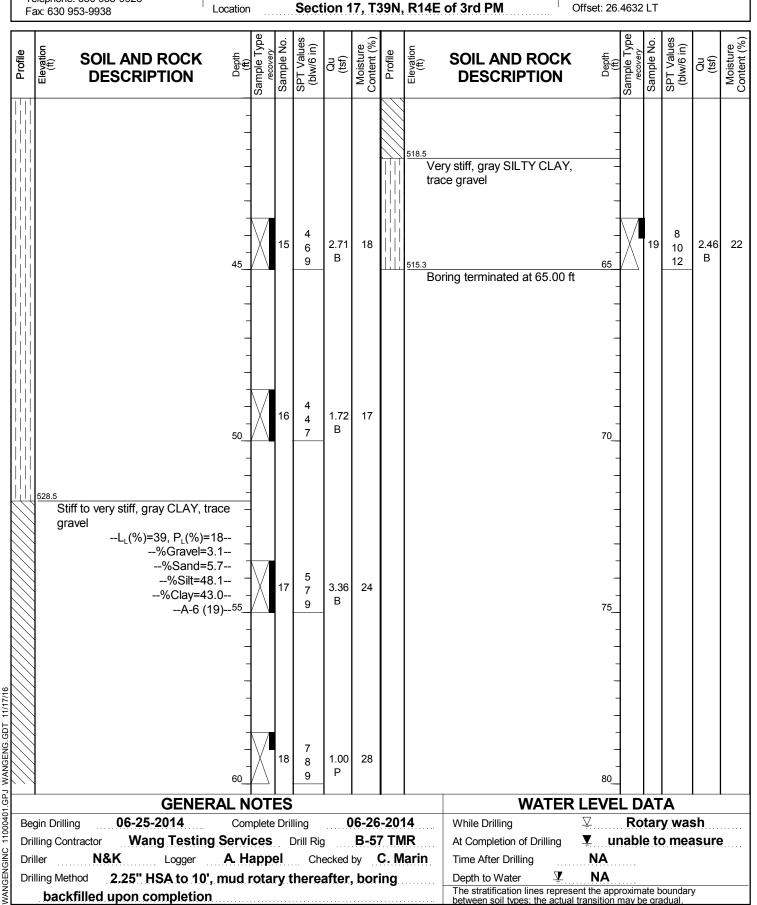
114 Lor Tel	Ingeng@wangeng.com 45 N Main Street mbard, IL 60148 lephone: 630 953-9928 x: 630 953-9938	Client Project Location		Circl	WEI e Inte	Job / ercha	No.: AEC	1100- OM Reco	54-B-04 04-01 Instruction of 3rd PM	Datum: N/ Elevation: North: 185 East: 117 Station: 84 Offset: 3.1	593.64 9800.0 1715.00 115+71	ft)5 ft) ft	Page -	4 of 4
Profile	SOIL AND ROCK	Depth (ft)	sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION	0.7	Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	0.2 inch or no infilling, vuggy with stylolitic surfaces. Run 1 -RECOVERY= 9 RQD= 7 Qu = 10,470 Boring terminated at 128.00	/, and _ 28%,) psi, 125 												
		140												
	GENERAL NOTES													
Begi	in Drilling 08-24-2015		olete Dri	-)8-25 `ME_			While Drilling	<u>,</u>		ary wa d at 12		
Drilli Drille	ing Contractor Wang Testin er R&N Logger	ng Servic F. Bo		Drill Riç Ch		DV			At Completion of Drilling Time After Drilling	■ NA	wiu	d at 12	π	
Drilli									Depth to Water					
140 140 140 180 140 180 140 1							The stratification lines rep between soil types: the act		oroximat may be	e boundar gradual.	у			

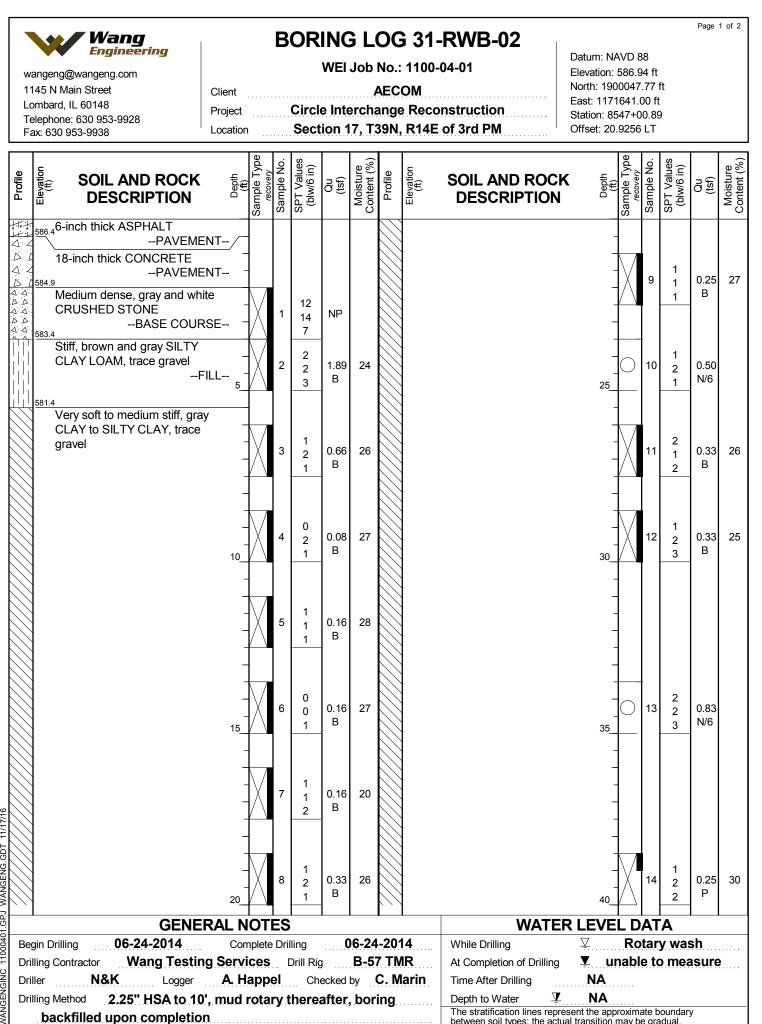
WANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16

Client

Project

BORING LOG 31-RWB-01


WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 580.25 ft North: 1899899.70 ft East: 1171625.80 ft Station: 8545+50.88 Offset: 26.4632 LT

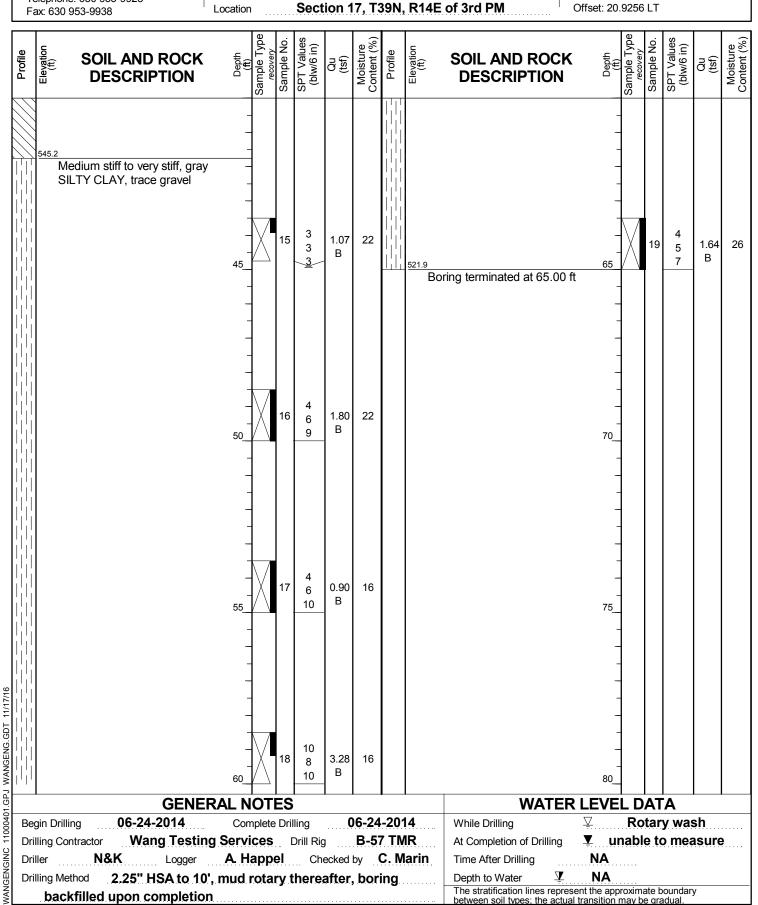
between soil types; the actual transition may be gradual

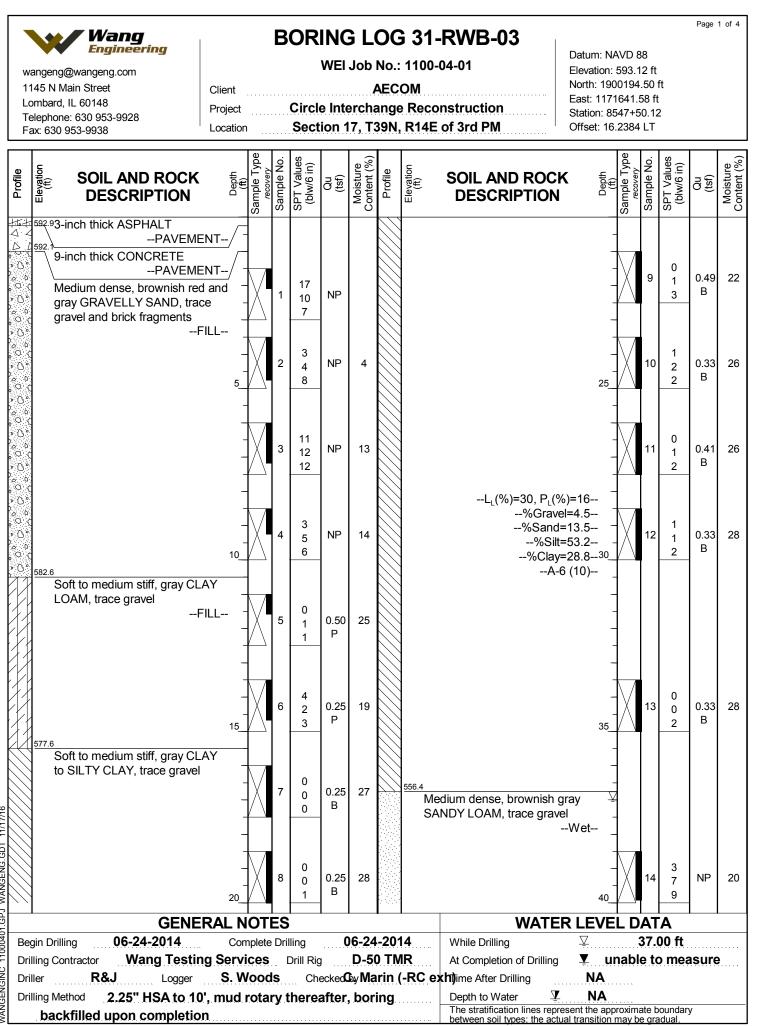
MANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16

Client

Project

BORING LOG 31-RWB-02


WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 586.94 ft North: 1900047.77 ft East: 1171641.00 ft Station: 8547+00.89 Offset: 20.9256 LT

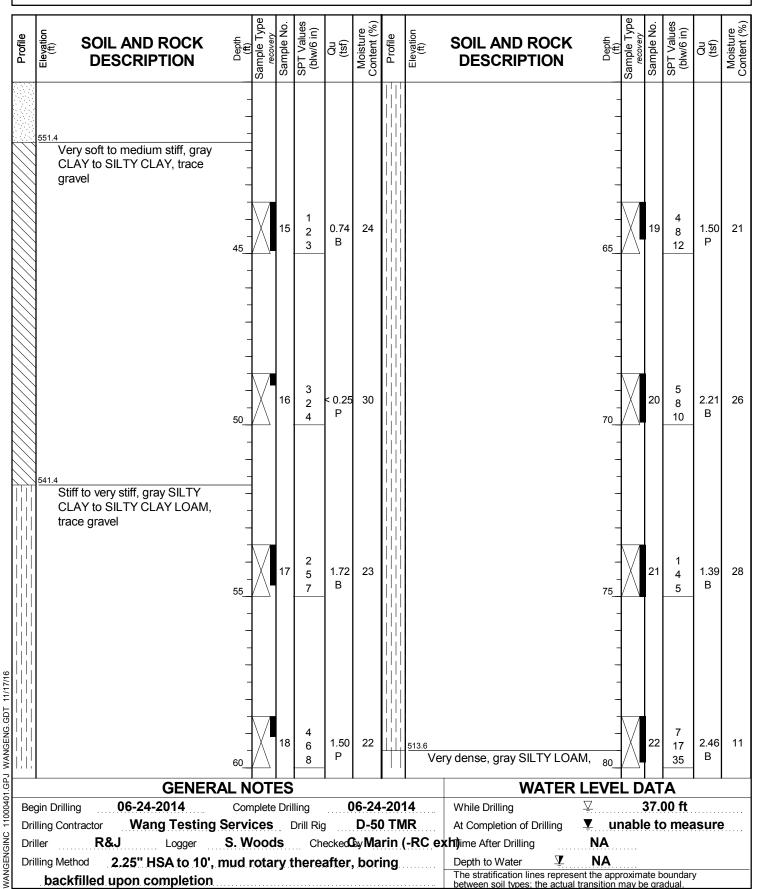
VANGENGINC 11000401.GPJ WANGENG.GDT 11/17/16

Client

Project

Location

BORING LOG 31-RWB-03


WEI Job No.: 1100-04-01

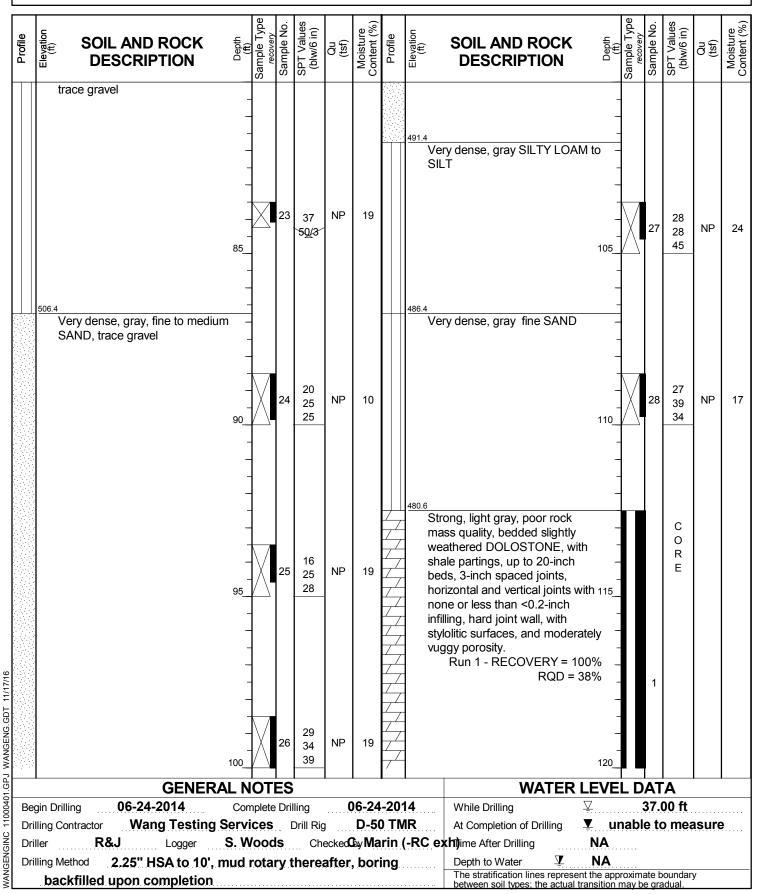
Page 2 of 4

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.12 ft North: 1900194.50 ft East: 1171641.58 ft Station: 8547+50.12 Offset: 16.2384 LT

BORING LOG 31-RWB-03


WEI Job No.: 1100-04-01

Page 3 of 4

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.12 ft North: 1900194.50 ft East: 1171641.58 ft Station: 8547+50.12 Offset: 16.2384 LT

Client

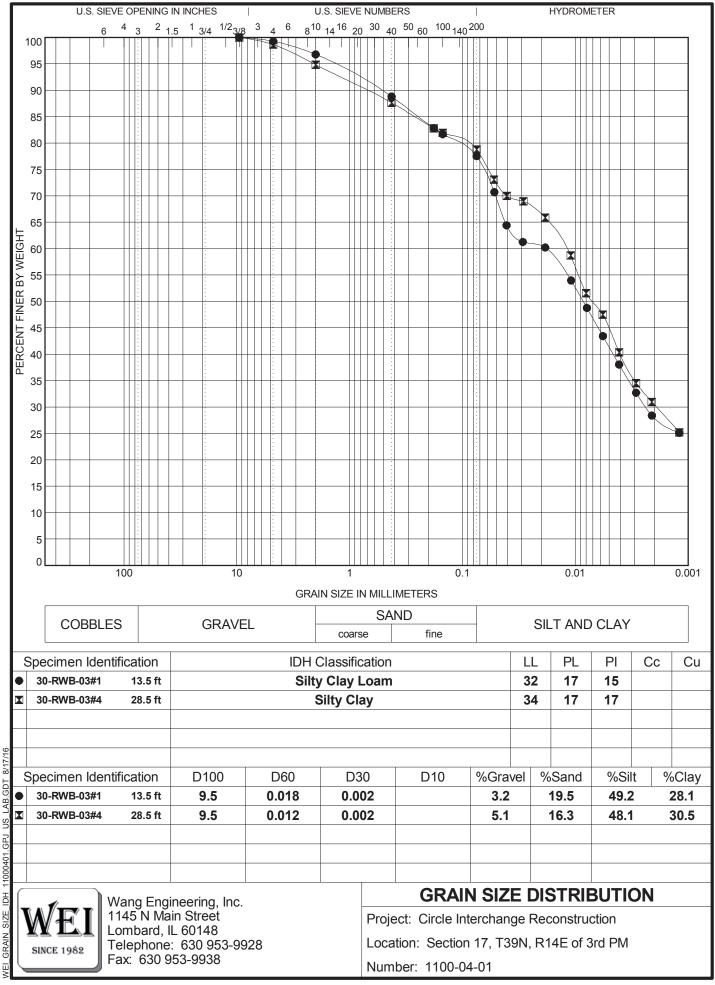
Project

BORING LOG 31-RWB-03

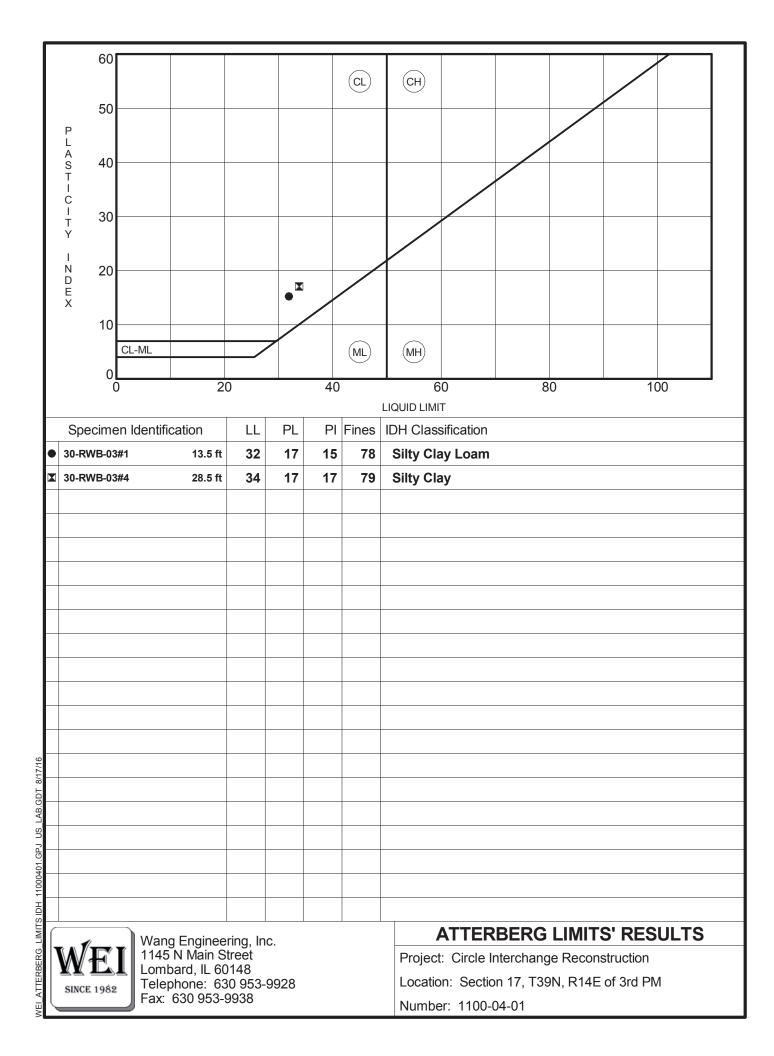
WEI Job No.: 1100-04-01

Page 4 of 4

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938


AECOM Circle Interchange Reconstruction Section 17, T39N, R14E of 3rd PM Datum: NAVD 88 Elevation: 593.12 ft North: 1900194.50 ft East: 1171641.58 ft Station: 8547+50.12 Offset: 16.2384 LT

	Fax: 630	953-9938	Location	Se	ction	17, T	39N,	R14E	of 3rd PM	Offset: 16	2384	LT		
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No. SPT Values	(IDIW/6 III) Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
Z	7													
Ľ	470.6 B	oring terminated at 122.50 ft		-	_									
		3												
			_											
			125											
			-											
			_											
			-											
			_											
			-											
			130											
			-											
			-											
			-											
			_ 135_											
			_											
			-											
17/16			-											
11/			-											
NG.GL														
ANGE														
א רו		051150												
WANGENGING 11000401.GPJ WANGENG.GDT 11/17/16	egin Dril		Complete I			06-24	-201	14	WATEF While Drilling	<u>₹ LEVE</u> ⊻		AIA 67.00 ft		
		ontractor Wang Testing		-		D-5			At Completion of Drilling			e to me	asure)
)riller	R&J Logger	S. Woods					(-RC ex	(hi) ime After Drilling	NA				
	orilling M			-			-		Depth to Water The stratification lines repres	NA sent the app	roxima	te bounda	ry	
\$	Dac	kfilled upon completion							between soil types; the actua	I transition	nav be	aradual.	-	



APPENDIX B

 $S: \times SGRs \$

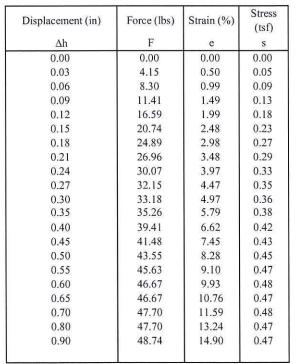
AB.GDT <u>v</u> 11000401.GPJ Ы SIZE GRAIN

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Analyst name: A. Mohammed

Test date: 11/15/2014


Date received: 6/25/2014

Sample description: Gray Silty Clay

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 30-RWB-03, ST#5 (33.5-35.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

in
in
g
g
g
(estimated)

Sand(%): NA	
Silt(%): NA	
Clay(%): NA	
Initial water content $w = 25.17\%$	(specimen)
Initial unit weight g = 127.43	pcf
Initial dry unit weight $g_d = 101.80$	pcf
Initial void ratio $e_0 = 0.69$	
Initial degree of saturation $S_r = 100\%$	
Average Rate of Strain= 1%/min	
Unconfined compressive strength $q_u = 0.48$	tsf
Shear Strength= 0.24	tsf

Hoo- o4- o1 30 - RwB - 03 33.5 - 35.5


NOTES:

Prepared by: Checked by:

Date: 11 17 14 11/17/14 Date:

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 30-ST-01, ST#12 (49.0-51.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.04$	in
Average initial diameter $d_0 = 2.85$	in
Height to diameter ratio= 2.12	
Mass of wet sample = 1272.10	g
Mass of dry sample and tare = 1190.70	g
Mass of tare $= 187.80$	g
Specific gravity = 2.76	(estimated)

Force (lbs)

F

0.00

12.44

20.74

26.96

29.04

33.18

37.33

39.41

41.48

43.55

45.63

47.70

49.78

49.78

51.85

53.92

53.92

53.92

56.00

56.00

56.00

Displacement (in)

Δh

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30 0.35

0.40

0.45

0.50

0.55

0.60

0.65 0.70

0.80

0.90

NOTES:

Stress

(tsf)

S

0.00

0.14

0.23 0.30

0.32

0.36

0.41

0.43

0.45

0.47

0.49

0.51

0.52

0.52

0.54

0.55

0.55

0.54

0.56

0.55

0.54

Strain (%)

e

0.00

0.50

0.99

1.49

1.99

2.48

2.98

3.47

3.97

4.47

4.96

5.79

6.62

7.45

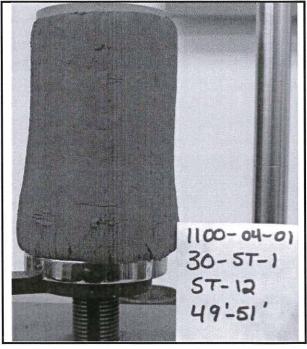
8.27

9.10

9.93

10.76

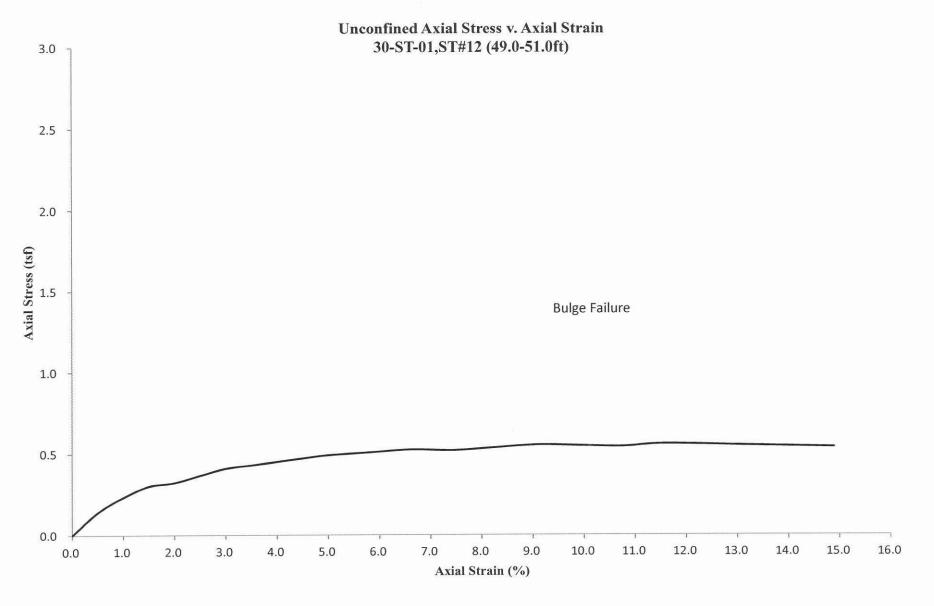
11.58


13.24

14.89

Analyst name:	S. Woods
Date received:	10/22/2014
Test date:	11/17/2014
Sample description:	Gray Silty Clay

Sand(%): NA Silt(%): NA


Clay(%): NA	
Initial water content $w = 26.84\%$	(specimen)
Initial unit weight $g = 125.48$	pcf
Initial dry unit weight $g_d = 98.93$	pcf
Initial void ratio $e_0 = 0.74$	
Initial degree of saturation $S_r = 100\%$	
Average Rate of Strain= 1%/min	
Unconfined compressive strength $q_u = 0.56$	tsf
Shear Strength= 0.28	tsf

Date: 11 19/14 Prepared by: Date: 11/19/14 Checked by:

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Project: Circle Interchange **Client: AECOM** WEI Job No.: 1100-04-01 Soil Sample ID: 30-ST-01, ST#13 (52.0-54.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.03$	in
Average initial diameter $d_0 = 2.85$	in
Height to diameter ratio= 2.11	
Mass of wet sample = 1331.10	g
Mass of dry sample and tare = 1200.00	g
Mass of tare $= 72.52$	g
Specific gravity $= 2.76$	(estimated)
Mass of dry sample and tare = 1200.00 Mass of tare = 72.52	g g

Force (lbs)

F

0.00

24.89

39.41

56.00

68.44

78.81

89.18

97.48

105.77

114.07

120.29

130.66

138.96

149.33

155.55 161.77

167.99

167.99

174.22

178.36

186.66

Displacement (in)

Δh

0.00

0.03

0.06

0.09

0.12 0.15

0.18

0.21

0.24

0.27

0.30 0.35

0.40

0.45

0.50

0.55

0.60 0.65

0.70

0.80

0.90

Stress

(tsf)

S

0.00

0.28

0.44

0.62

0.75

0.86

0.97 1.06

1.14

1.23

1.29

1.39

1.46

1.56

1.61

1.65

1.70

1.69

1.73

1.74

1.79

Strain (%)

e

0.00 0.50

0.99

1.49

1.99

2.49

2.98

3.48

3.98

4.47

4.97

5.80

6.63

7.46

8.29

9.11

9.94

10.77

11.60


13.26

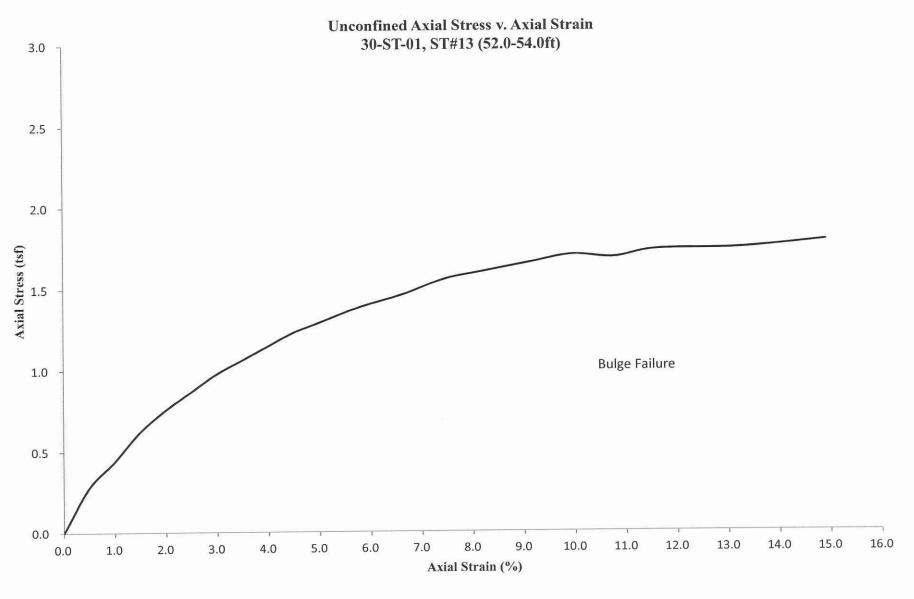
14.91

Analyst name: S. Woods Date received: 10/22/2014 Test date: 11/17/2014 Sample description: Gray Silty Clay

> Sand(%): NA Silt(%): NA Clav(%): NA

Ciay(70). INA	
Initial water content $w = 18.06\%$	(specimen)
Initial unit weight $g = 131.35$	pcf
Initial dry unit weight $g_d = 111.26$	pcf
Initial void ratio $e_0 = 0.55$	
Initial degree of saturation $S_r = 91\%$	
Average Rate of Strain= 1%/min	
Unconfined compressive strength $q_u = 1.79$	tsf
Shear Strength= 0.89	tsf

NOTES:


Prepared by:

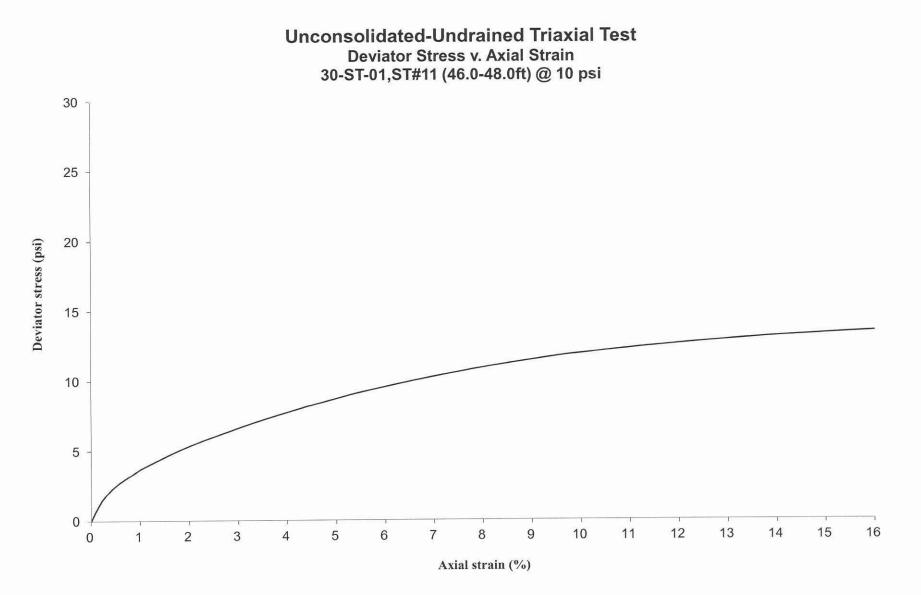
Date: 11 19 14 Date: 11/19/14

Checked by:

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/22/2014	
WEI Job No.: 1100-04-01		Test date: 11/24/2014	
Soil Sample ID: 30-ST-01, ST# 11	(46.0-48.0ft)	Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.76 in	Initial water content w =	25.57%
Initial diameter $d_0 =$	2.87 in	Initial unit weight $\gamma_w =$	124.02 pcf
Initial area $A_0 =$	6.46 in ²	Initial dry unit weight $\gamma_d =$	98.77 pcf
Mass of wet sample and tare $M_i =$	1223.54 g	Initial void ratio $e_0 =$	0.756
Mass of dry sample and tare $M_d =$	977.10 g	Initial degree of saturation S _r =	94%
Mass of tare $M_t =$	13.34 g		
Mass of sample Ms=	1210.20 g	Liquid Limit (%):	NA
Estimated specific gravity Gs =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.01		
		Deviator stress at failure $D\sigma_c =$	0.85 tsf


Axial	Axial	Axial	Deviator	1100.04.01
Displacement	Force	Strain	Stress	1100104101
(in)	(lbs)	(%)	(psi)	30-51-01
Δh	F	e	σ_1 - σ_3	30- ST-01 ST-11 46-48' ZEC
0.00	0.00	0.00	0.00	
0.01	5.20	0.11	0.80	iza ol
0.01	9.49	0.22	1.47	
0.02	12.49	0.33	1.93	
0.03	15.00	0.44	2.31	
0.03	17.23	0.56	2.65	
0.04	18.79	0.66	2.89	
0.04	20.26	0.75	3.11	
0.05	22.10	0.88	3.39	
0.06	23.88	1.00	3.66	
0.06	24.61	1.06	3.77	
0.09	31.25	1.63	4.76	
0.12	36.15	2.11	5.48	
0.15	41.35	2.69	6.23	
0.18	45.70	3.20	6.85	
0.22	50.11	3.76	7.47	
0.25	54.36	4.32	8.05	
0.28	57.67	4.80	8.50	
0.31	61.59	5.36	9.02	
0.34	64.74	5.88	9.43	
0.37	68.08	6.43	9.86	
0.40	71.14	6.97	10.25	
0.43	74.01	7.51	10.60	
0.46	76.68	8.03	10.92	
0.49	79.16	8.55	11.21	Bulge Failure
0.52	81.76	9.12	11.50	
0.56	84.12	9.64	11.77	
0.58	85.92	10.16	11.95	
0.62	88.03	10.71	12.17	
0.68	91.55	11.77	12.51	
0.74	94.89	12.82	12.81	
0.80	98.10	13.92	13.07	
0.86	100.80	14.96	13.27	
0.92	103.52	16.06	13.45	
		Ргера	ired by:	Tay Date: 11/25/14 Life Date: 4/25/14
		Chec	ked by:	Life Date: 1/25/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

Axial

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/22/2014	
WEI Job No.: 1100-04-01		Test date: 11/24/2014	
Soil Sample ID: 30-ST-01, ST# 11	(46.0-48.0ft)	Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.75 in	Initial water content w =	24.58%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	128.96 pcf
Initial area $A_0 =$	6.30 in ²	Initial dry unit weight $\gamma_d =$	103.51 pcf
Mass of wet sample and tare $M_i =$	1239.89 g	Initial void ratio $e_0 =$	0.676
Mass of dry sample and tare $M_d =$	997.90 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.59 g		
Mass of sample Ms=	1226.30 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.03		
		Deviator stress at failure $D\sigma_f =$	0.87 tsf
		Major principal stress at failure $\sigma_1 =$	2.31 tsf

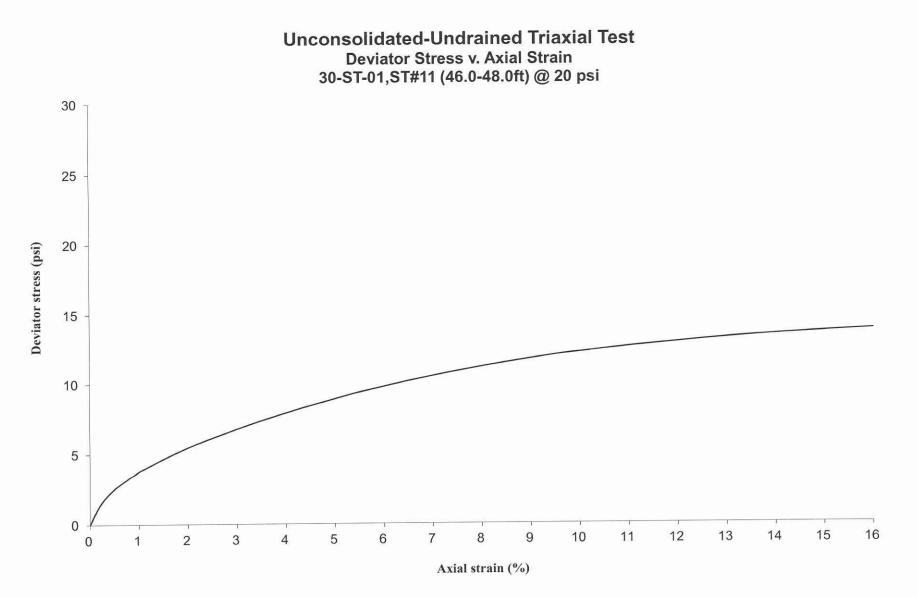
Deviator

Axial

Displacement (in)	Force (lbs)	Strain (%)	Stress (psi)	
Δh	F	e	σ1-σ3	
0.00	0.00	0.00	0.00	
0.01	5.20	0.11	0.82	100
0.01	9.49	0.22	1.50	
0.02	12.49	0.33	1.98	
0.03	15.00	0.44	2.37	
0.03	17.23	0.56	2.72	17
0.04	18.79	0.66	2.96	
0.04	20.26	0.75	3.19	10 11
0.05	22.10	0.88	3.48	
0.06	23.88	1.00	3.75	
0.06	24.61	1.06	3.86	
0.09	31.25	1.64	4.88	10 - H
0.12	36.15	2.11	5.62	
0.15	41.35	2.69	6.39	
0.18	45.70	3.20	7.02	
0.22	50.11	3.76	7.65	
0.25	54.36	4.33	8.25	
0.28	57.67	4.81	8.71	
0.31	61.59	5.37	9.25	1
0.34	64.74	5.88	9.67	1
0.37	68.08	6.44	10.11	1
0.40	71.14	6.98	10.50	
0.43	74.01	7.52	10.86	
0.46	76.68	8.04	11.19	P
0.49	79.16	8.56	11.49	
0.52	81.76	9.13	11.79	
0.56	84.12	9.65	12.06	
0.58	85.92	10.17	12.25	
0.62	88.03	10.72	12.47	
0.68	91.55	11.78	12.82	
0.74	94.89	12.83	13.13	
0.80	98.10	13.94	13.40	
0.86	100.80	14.97	13.60	
0.92	103.52	16.07	13.79	

Prepared by:

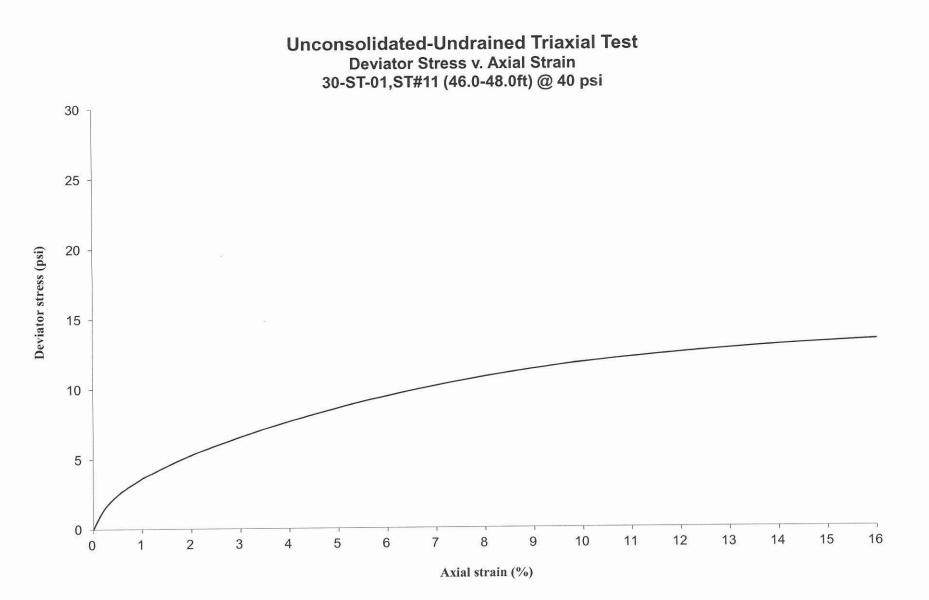
Checked by: _


1.6

Axial

Lary Date: 11/25/14 Date: 11/25/14

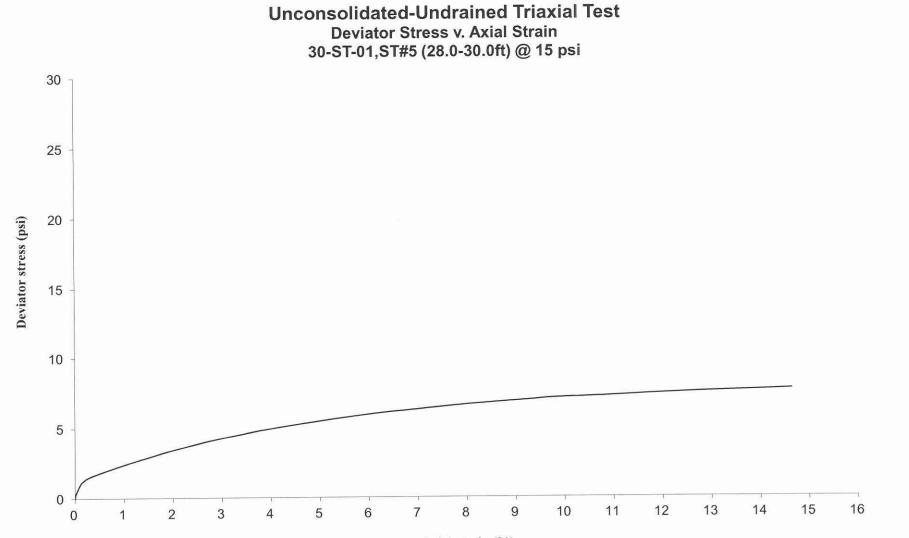
UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2		Analyst name: M. de los Reyes		
Client: AECOM			Date received: 10/22/2014		
WEI Job No.: 1100-04-01			Test date: 11/24/2014		
Soil Sample ID: 30-ST-01, ST# 11 ((46.0-48.0ft)		Sample description: Gray SILTY CLA	Y	
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	5.69 ii	n	Initial water content w =	24.07%	
Initial diameter $d_0 =$	2.87 ii	n	Initial unit weight $\gamma_w =$	125.96	pcf
Initial area $A_0 =$	6.48 ii	n ²	Initial dry unit weight γ_d =	101.52	pcf
Mass of wet sample and tare M _i =	1234.04 g	5	Initial void ratio $e_0 =$	0.709	
Mass of dry sample and tare $M_d =$	997.20 g	ş	Initial degree of saturation $S_r =$	94%	
Mass of tare $M_t =$	13.44 g	5			
Mass of sample Ms=	1220.60 g	5	Liquid Limit (%):	NA	
Estimated specific gravity Gs =	2.78		Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	40.0 p	osi	Sand(%):	NA	
Rate of strain =	1 9	%/min	Silt(%):	NA	
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	1.98				
 Statistical and the statistical statistexec statistical statistical statistical statistical statistic			Deviator stress at failure $D\sigma_f =$	0.84	tsf
			Major principal stress at failure $\sigma_1 =$	3.72	tsf

and the second se	the second se			
Axial	Axial	Axial	Deviator	1100-04-01
Displacement	Force	Strain	Stress	100-1-1
(in)	(lbs)	(%)	(psi)	30-51-01
Δh	F	e	σ_1 - σ_3	100.04-01 30-57.01 57-11 46.48 40 psi
0.00	0.00	0.00	0.00	La Psi
0.01	5.20	0.11	0.80	TO I TO
0.01	9.49	0.23	1.46	
0.02	12.49	0.34	1.92	
0.03	15.00	0.45	2.30	and the second sec
0.03	17.23	0.57	2.64	
0.04	18.79	0.66	2.88	
0.04	20.26	0.76	3.10	
0.05	22.10	0.89	3.38	
0.06	23.88	1.01	3.64	
0.06	24.61	1.07	3.75	
0.09	31.25	1.65	4.74	
0.12	36.15	2.13	5.46	
0.15	41.35	2.72	6.20	
0.18	45.70	3.23	6.82	
0.22	50.11	3.80	7.43	
0.25	54.36	4.37	8.02	
0.28	57.67	4.86	8.46	
0.31	61.59	5.42	8.98	
0.34	64.74	5.94	9.39	
0.37	68.08	6.50	9.82	
0.40	71.14	7.05	10.20	
0.43	74.01	7.59	10.55	
0.46	76.68	8.12	10.86	
0.49	79.16	8.64	11.15	Bulge Failure
0.52	81.76	9.22	11.45	
0.56	84.12	9.75	11.71	
0.58	85.92	10.27	11.89	
0.62	88.03	10.83	12.11	
0.68	91.55	11.90	12.44	
0.74	94.89	12.96	12.74	
0.80	98.10	14.08	13.00	
0.86	100.80	15.12	13.19	
0.92	103.52	16.23	13.37	
		Prep	ared by:	Jany Date: 11/25/14 Ash Date: 1/25/14
		Chec	ked by:	15L Date: 125/14

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange			Analyst name: M. de los Reyes		
Client: AECOM			Date received: 10/22/2014		
WEI Job No.: 1100-04-01			Test date: 11/25/2014		
Soil Sample ID: 30-ST-01, ST# 5 (2	8.0-30.0ft)		Sample description: Gray CLAY trac	e Gravel	
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	5.66	in	Initial water content w =	22.17%	
Initial diameter $d_0 =$	2.84	in	Initial unit weight $\gamma_w =$	131.78	pcf
Initial area $A_0 =$	6.36	in ²	Initial dry unit weight $\gamma_d =$	107.87	pcf
Mass of wet sample and tare $M_i =$	1260.27	g	Initial void ratio $e_0 =$	0.608	
Mass of dry sample and tare $M_d =$	1034.40	g	Initial degree of saturation $S_r =$	100%	
Mass of tare $M_t =$	15.37	g			
Mass of sample Ms=	1244.90	g	Liquid Limit (%):	NA	
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	15.0	psi	Sand(%):	NA	
Rate of strain =	1	%/min	Silt(%):	NA	
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	1.99				
			Deviator stress at failure $D\sigma_f =$	0.55	tsf
			Major principal stress at failure σ_1 =	1.63	tsf

		Deviator	Axial	Axial	Axial
		Stress	Strain	Force	Displacement
		(psi)	(%)	(lbs)	(in)
		σ_1 - σ_3	e	F	Δh
	3 A	0.00	0.00	0.00	0.00
The second second	- Call	0.34	0.02	2.19	0.00
a sate ditte		1.05	0.11	6.65	0.01
The state of the	1 Street	1.36	0.21	8.68	0.01
		1.54	0.30	9.80	0.02
A CONTRACTOR OF A CONTRACTOR		1.66	0.40	10.62	0.02
STALL T		1.79	0.50	11.43	0.03
line at at	1	1.91	0.60	12.23	0.03
1100-04-01		2.04	0.70	13.05	0.04
30-51-01		2.16	0.80	13.85	0.05
		2.28	0.90	14.59	0.05
30-5T-01 5T#5(28'-30 15psi		2.80	1.39	18.07	0.08
15051		3.28	1.85	21.22	0.10
a state of the second state of the	A State of the second	3.71	2.33	24.15	0.13
A CONTRACTOR OF THE OWNER		4.12	2.81	26.92	0.16
Com representation of the		4.46	3.30	29.31	0.19
		4.79	3.77	31.62	0.21
		5.07	4.27	33.69	0.24
		5.35	4.76	35.67	0.27
		5.59	5.26	37.52	0.30
		5.82	5.75	39.26	0.33
		6.05	6.24	40.98	0.35
		6.21	6.74	42.30	0.38
		6.37	7.23	43.63	0.41
Bulge Fail		6.53	7.74	45.02	0.44
		6.68	8.25	46.27	0.47
		6.82	8.80	47.54	0.50
	1	6.93	9.29	48.59	0.53
		7.07	9.77	49.78	0.55
		7.18	10.75	51.13	0.61
		7.34	11.74	52.87	0.67
		7.48	12.72	54.48	0.72
		7.57	13.68	55.74	0.77
		7.68	14.64	57.19	0.83

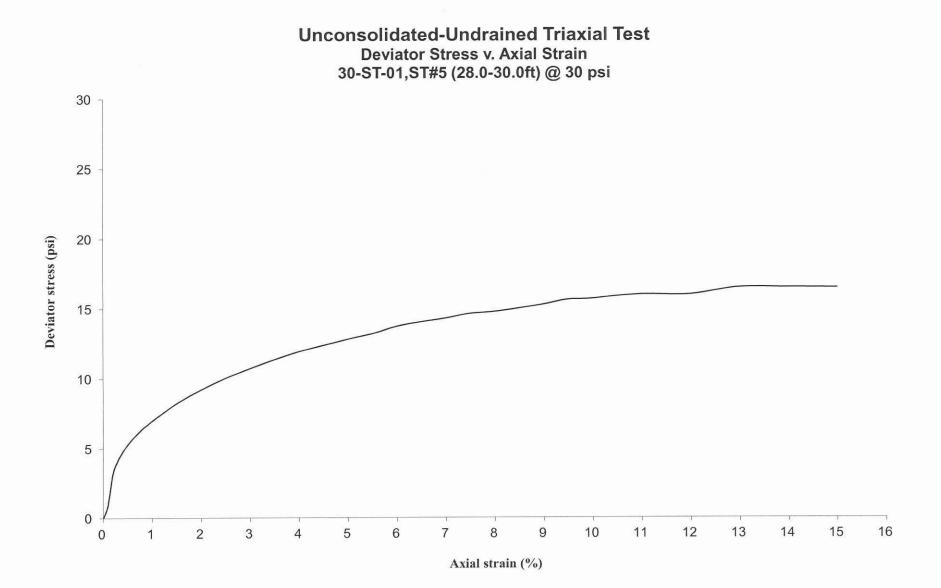
Axial strain (%)

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/22/2014	
WEI Job No.: 1100-04-01		Test date: 12/8/2014	
Soil Sample ID: 30-ST-01, ST# 5 (28.0-30.0ft)	Sample description: Gray CLAY trac	e Gravel
Type/Condition: ST/ Undisturbed			
Initial height $h_0 =$	5.57 in	Initial water content w =	21.72%
Initial diameter $d_0 =$	2.79 in	Initial unit weight $\gamma_w =$	133.25 pcf
Initial area $A_0 =$	6.13 in ²	Initial dry unit weight $\gamma_d =$	109.47 pcf
Mass of wet sample and tare $M_i =$	1208.11 g	Initial void ratio $e_0 =$	0.585
Mass of dry sample and tare $M_d =$	994.90 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.21 g		
Mass of sample Ms=	1194.90 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	30.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.99		
		Deviator stress at failure $D\sigma_f =$	1.19 tsf

Major principal stress at failure $\sigma_1 = 3.35$ tsf

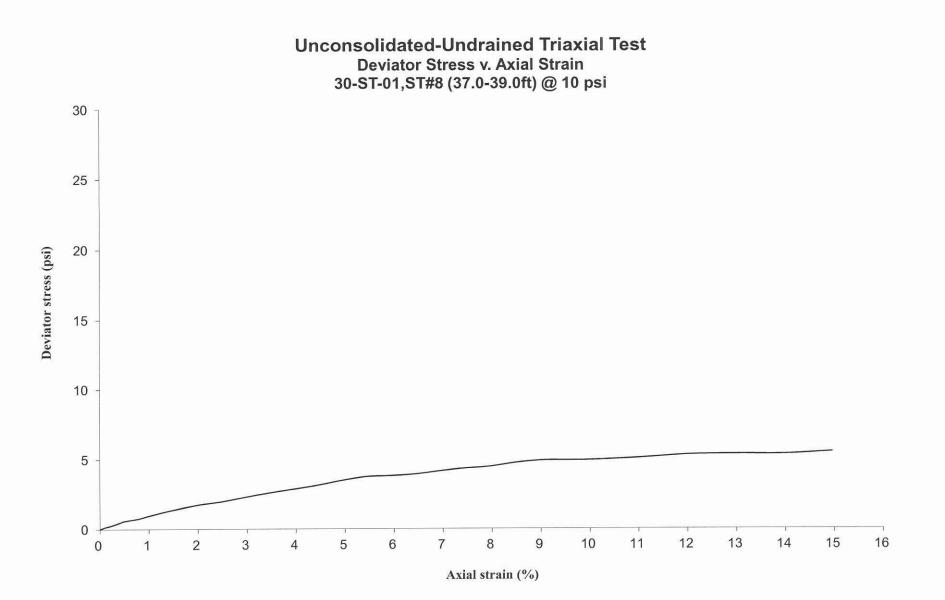

Displacement	Force	Axial Strain	Deviator Stress	1100-04-01 30-55-1
(in)	(lbs)	(%)	(psi)	2. 17 1
Δh	F	e	σ_1 - σ_3	30-51-1
0.00	0.00	0.00	0.00	28-30' 30 Psi
0.01	5.72	0.10	0.93	
0.01	19.48	0.20	3.17	30 PSi
0.02	25.13	0.29	4.09	
0.02	29.11	0.39	4.73	
0.03	32.31	0.49	5.24	
0.03	35.02	0.59	5.68	
0.04	37.43	0.69	6.06	
0.04	39.56	0.79	6.40	
0.05	41.37	0.90	6.69	4
0.06	43.16	0.99	6.97	
0.08	51.13	1.49	8.21	
0.11	57.49	1.99	9.19	
0.14	62.94	2.48	10.01	
0.17	67.62	2.98	10.70	
0.19	72.05	3.48	11.34	
0.22	76.18	4.00	11.93	
0.25	79.51	4.52	12.38	
0.28	82.84	5.02	12.83	
0.31	85.73	5.51	13.21	
0.33	89.47	5.99	13.72	
0.36	92.01	6.48	14.03	
0.39	94.10	6.97	14.28	
0.42	96.81	7.46	14.61	
0.44	98.26	7.96	14.75	Bulge I
0.47	100.32	8.46	14.97	Second Second
0.50	102.90	8.99	15.27	
0.53	105.67	9.47	15.60	
0.55	106.69	9.96	15.66	
0.61	109.97	10.95	15.97	
0.67	111.22	11.98	15.96	
0.72	115.98	12.98	16.46	
0.78	117.30	13.97	16.45	
0.84	118.58	14.99	16.44	
		Prepa	red by:	Date: 12/10/14 Date: 12/16/14
		Chaol	ked by:	Data: 12/15/14

AASHTO R18

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

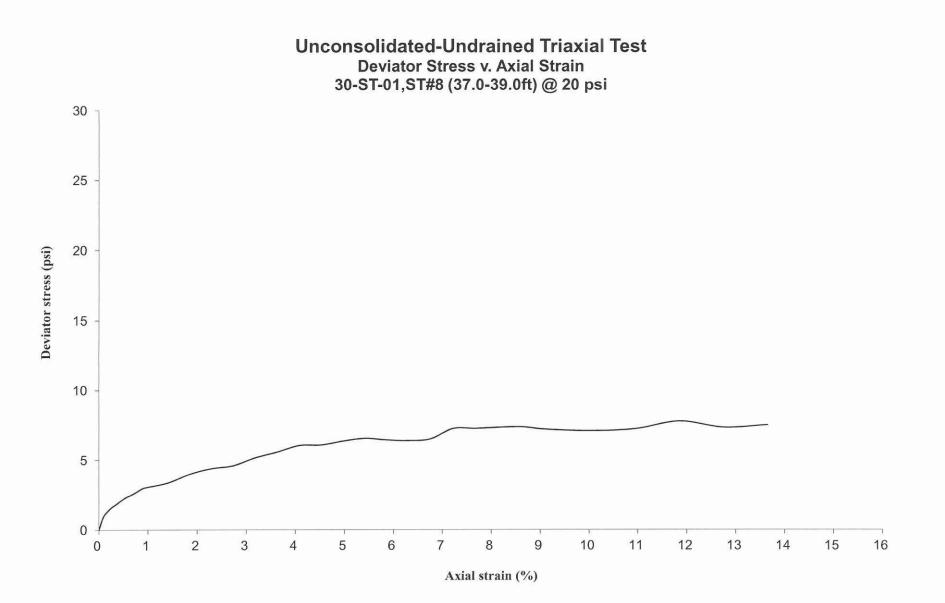
UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	e		Analyst name: M. de los Reyes		
Client: AECOM			Date received: 10/22/2014		
WEI Job No.: 1100-04-01			Test date: 11/25/2014		
Soil Sample ID: 30-ST-01, ST# 8 (3	37.0-39.0ft)		Sample description: Gray CLAY		
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	5.59	in	Initial water content w =	25.03%	
Initial diameter d ₀ =	2.79	in	Initial unit weight $\gamma_w =$	129.56 pcf	
Initial area $A_0 =$	6.12	in ²	Initial dry unit weight $\gamma_d =$	103.62 pcf	
Mass of wet sample and tare M _i =	1349.07	g	Initial void ratio $e_0 =$	0.674	
Mass of dry sample and tare $M_d =$	1116.20	g	Initial degree of saturation $S_r =$	100%	
Mass of tare $M_t =$	185.67	g			
Mass of sample Ms=	1163.40	g	Liquid Limit (%):	NA	
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	10.0	psi	Sand(%):	NA	
Rate of strain =	1	%/min	Silt(%):	NA	
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	2.00				
			Deviator stress at failure $D\sigma_f =$	0.40 tsf	
			Major principal stress at failure σ_1 =	1.12 tsf	

Axial	Axial	Axial	Deviator	
Displacement	Force	Strain	Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	A REAL PROPERTY OF A REAL PROPER
0.01	0.79	0.10	0.13	and the second second second second second
0.01	1.35	0.19	0.22	A CONTRACTOR OF
0.02	1.94	0.29	0.32	
0.02	2.65	0.38	0.43	the second shall be been second
0.03	3.40	0.48	0.55	
0.03	3.89	0.58	0.63	1100-04-01
0.04	4.23	0.69	0.69	30-ST-1
0.04	4.61	0.80	0.75	55-8
0.05	5.26	0.90	0.85	37-39
0.06	5.91	1.01	0.96	51-37
0.08	8.53	1.50	1.37	10 psi
0.11	10.77	2.00	1.72	IN PSI
0.14	12.28	2.49	1.96	
0.17	14.38	2.97	2.28	
0.19	16.33	3.45	2.58	
0.22	18.04	3.91	2.83	A REAL PROPERTY AND A REAL
0.25	19.99	4.44	3.12	
0.28	22.33	4.93	3.47	And a state of the
0.30	24.21	5.44	3.74	
0.33	24.75	5.94	3.81	
0.36	25.62	6.43	3.92	
0.39	27.16	6.92	4.13	
0.41	28.53	7.41	4.32	
0.44	29.58	7.94	4.45	Bulge Failure
0.47	31.51	8.46	4.72	
0.50	32.87	9.03	4.89	
0.53	33.13	9.52	4.90	
0.56	33.40	10.02	4.91	
0.61	34.75	10.99	5.06	
0.67	36.76	12.02	5.29	
0.73	37.50	13.01	5.33	
0.78	37.86	13.97	5.32	
0.84	39.53	14.95	5.49	
			ared by:	Tay Date: 11/29/14 Date: 11/24/14

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	1	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/22/2014	
WEI Job No.: 1100-04-01		Test date: 11/25/2014	
Soil Sample ID: 30-ST-01, ST# 8 (3	37.0-39.0ft)	Sample description: Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	6.15 in	Initial water content w =	24.56%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	116.04 pcf
Initial area $A_0 =$	6.28 in ²	Initial dry unit weight $\gamma_d =$	93.16 pcf
Mass of wet sample and tare $M_i =$	1364.76 g	Initial void ratio $e_0 =$	0.862
Mass of dry sample and tare $M_d =$	1132.60 g	Initial degree of saturation $S_r =$	79%
Mass of tare $M_t =$	187.16 g		
Mass of sample Ms=	1177.60 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.18		
		Deviator stress at failure $D\sigma_f =$	0.56 tsf
		Major principal stress at failure σ_1 =	2.00 tsf

Force (lbs) Strain (%) Stress (psi) F e σ_1 - σ_3 0.00 0.00 0.00 5.73 0.09 0.91 8.36 0.18 1.33 10.30 0.27 1.63 11.70 0.37 1.86 13.29 0.46 2.11 14.67 0.55 2.32 15.61 0.65 2.47 16.74 0.74 2.64
F e $\sigma_1 \cdot \sigma_3$ 0.00 0.00 0.00 5.73 0.09 0.91 8.36 0.18 1.33 10.30 0.27 1.63 11.70 0.37 1.86 13.29 0.46 2.11
5.73 0.09 0.91 8.36 0.18 1.33 10.30 0.27 1.63 11.70 0.37 1.86 13.29 0.46 2.11
8.36 0.18 1.33 10.30 0.27 1.63 11.70 0.37 1.86 13.29 0.46 2.11
10.30 0.27 1.63 $100-04-04$ 11.70 0.37 1.86 $30-5t-14$ 13.29 0.46 2.11 $5t-54$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11.70 0.37 1.80 13.20 0.46 2.11 St- &
13.29 0.46 2.11 14.67 0.55 2.32 37-29
14.67 0.55 2.32 57-29
1107 0.00 2.02
15.61 0.65 2.47
16.74 0.74 2.64 20 PS
18.03 0.83 2.85
19.05 0.93 3.00
21.32 1.39 3.35
25.46 1.85 3.98
28.22 2.29 4.39
29.68 2.74 4.60
33.48 3.19 5.16
36.29 3.63 5.57
39.60 4.09 6.05
40.01 4.53 6.08
42.05 4.98 6.36
43.49 5.43 6.55
42.93 5.87 6.43
42.81 6.32 6.38
43.84 6.76 6.51
49.10 7.22 7.25 Bulge Failu
49.42 7.68 7.26
50.25 8.19 7.34
50.66 8.65 7.37
49.76 9.11 7.20
49.48 10.02 7.09
50.97 10.95 7.23
55.40 11.85 7.77
52.76 12.75 7.33
54.57 13.65 7.50

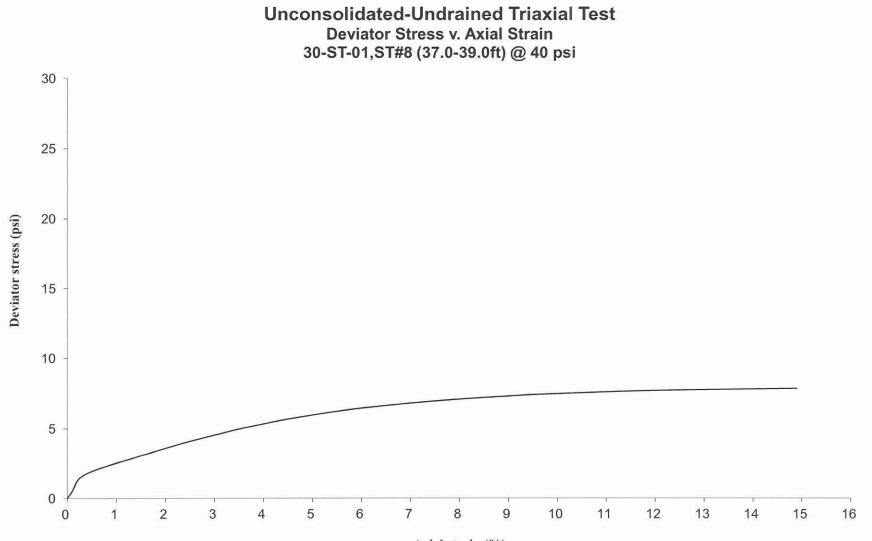
AASHTO R18

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	e		Analyst name: M. de los Reyes		
Client: AECOM			Date received: 10/22/2014		
WEI Job No.: 1100-04-01			Test date: 11/25/2014		
Soil Sample ID: 30-ST-01, ST# 8 (3	37.0-39.0ft)		Sample description: Gray CLAY		
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	5.62	in	Initial water content w =	25.15%	5
Initial diameter $d_0 =$	2.78	in	Initial unit weight $\gamma_w =$	131.56	5 pcf
Initial area $A_0 =$	6.07	in ²	Initial dry unit weight $\gamma_d =$	105.13	B pcf
Mass of wet sample and tare $M_i =$	1365.90	g	Initial void ratio $e_0 =$	0.650)
Mass of dry sample and tare $M_d =$	1129.10	g	Initial degree of saturation $S_r =$	100%	5
Mass of tare $M_t =$	187.40	g			
Mass of sample Ms=	1178.50	g	Liquid Limit (%):	NA	\
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	40.0	psi	Sand(%):	NA	1
Rate of strain =	1	%/min	Silt(%):	NA	1
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	2.02				
			Deviator stress at failure $D\sigma_f =$	0.56	tsf
			Major principal stress at failure σ_1 =	3.44	tsf

	Deviator Stress	Axial Strain	Axial Force	Axial Displacement
	(psi)	(%)	(lbs)	(in)
	σ1-α3	e	F	Δh
	0.00	0.00	0.00	0.00
A CALLER AND A CALLER AND	0.51	0.10	3.12	0.01
	1.27	0.21	7.74	0.01
	1.61	0.32	9.80	0.02
and the second second	1.81	0.42	11.02	0.02
1100-04-0	1.95	0.52	11.93	0.03
30- ST- 1 ST- 8 37- 89 40 psi	2.09	0.62	12.78	0.03
St-8	2.21	0.72	13.53	0.04
37- 30	2.32	0.82	14.21	0.05
-1 34	2.43	0.92	14.91	0.05
110	2.54	1.02	15.56	0.06
40 psi	3.05	1.50	18.81	0.08
and the second se	3.56	1.99	22.09	0.11
	4.05	2.47	25.22	0.14
	4.49	2.96	28.10	0.17
	4.90	3.42	30.83	0.19
	5.28	3.94	33.40	0.22
The state of the second	5.63	4.43	35.78	0.25
	5.91	4.92	37.76	0.28
	6.17	5.41	39.62	0.30
	6.41	5.89	41.34	0.33
	6.58	6.39	42.72	0.36
	6.76	6.87	44.06	0.39
	6.92	7.39	45.37	0.42
Bulge Fa	7.06	7.91	46.58	0.44
	7.18	8.42	47.59	0.47
	7.29	8.97	48.63	0.50
	7.39	9.46	49.60	0.53
	7.46	9.96	50.32	0.56
	7.59	10.96	51.75	0.62
	7.68	11.96	53.00	0.67
	7.74	12.93	54.00	0.73
	7.79	13.90	54.94	0.78
	7.83	14.90	55.92	0.84


Date: $\frac{1129114}{129114}$

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

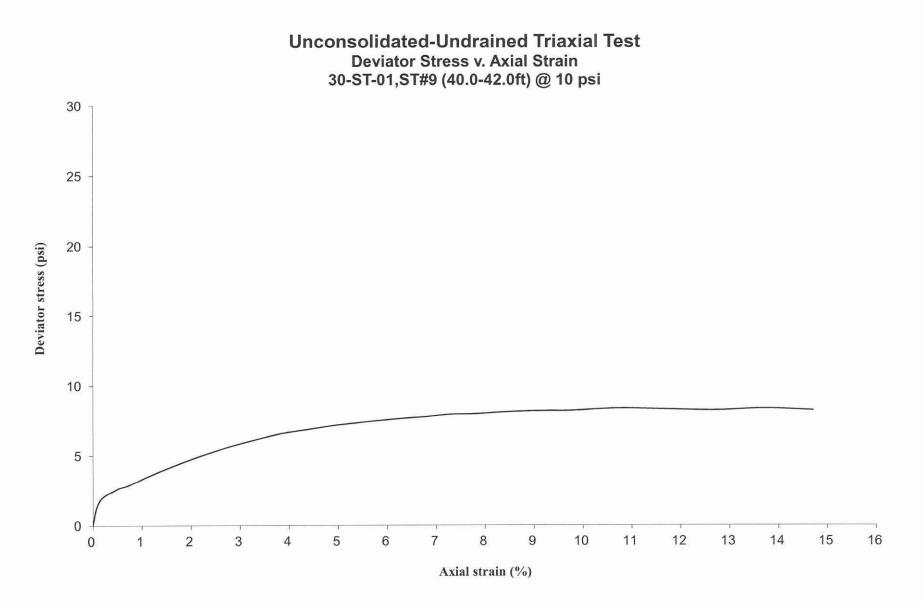
Axial strain (%)

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/22/2014	
WEI Job No.: 1100-04-01		Test date: 12/4/2014	
Soil Sample ID: 30-ST-01, ST# 9 (4	40.0-42.0ft)	Sample description: Gray SILTY CL	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.59 in	Initial water content w =	25.15%
Initial diameter $d_0 =$	2.85 in	Initial unit weight $\gamma_w =$	126.10 pcf
Initial area $A_0 =$	6.37 in ²	Initial dry unit weight $\gamma_d =$	100.76 pcf
Mass of wet sample and tare $M_i =$	1363.86 g	Initial void ratio $e_0 =$	0.722
Mass of dry sample and tare $M_d =$	1127.30 g	Initial degree of saturation $S_r =$	97%
Mass of tare $M_t =$	186.86 g		
Mass of sample Ms=	1177.00 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.96		
		Deviator stress at failure $D\sigma_f =$	0.60 tsf

Major principal stress at failure $\sigma_1 =$	1.32 tsf

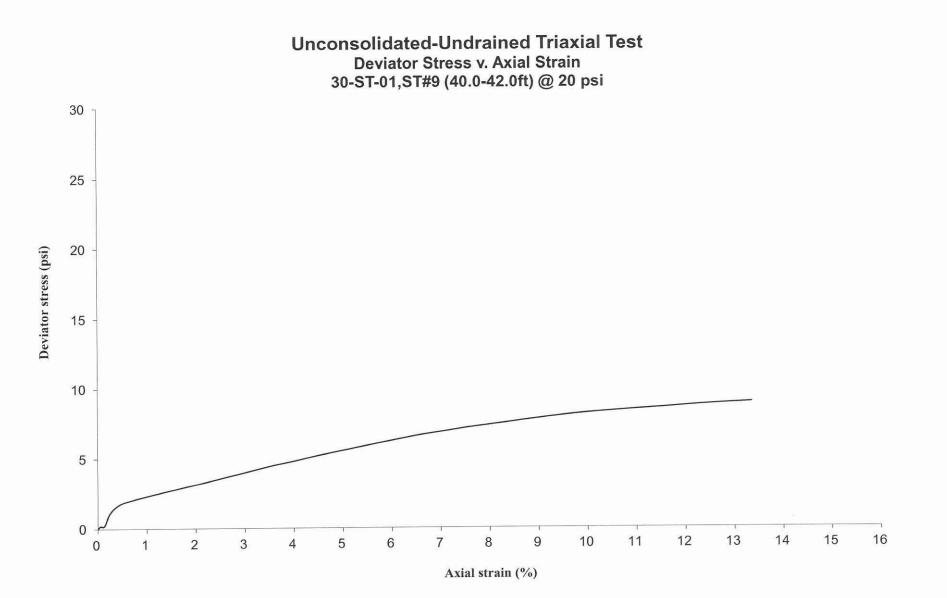

Axial Displacement	Axial Force	Axial Strain	Deviator Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ1-σ3	
0.00	0.00	0.00	0.00	
0.00	7.42	0.07	1.17	
0.01	11.75	0.15	1.84	
0.01	13.72	0.25	2.15	
0.02	14.82	0.34	2.32	
0.02	15.91	0.44	2.49	
0.03	17.06	0.53	2.66	
0.04	17.72	0.63	2.77	
0.04	18.55	0.74	2.89	
0.05	19.55	0.83	3.05	
0.05	20.52	0.93	3.19	
0.08	25.36	1.41	3.93	
0.11	29.81	1.90	4.59	
0.13	33.81	2.38	5.18	
0.16	37.44	2.87	5.71	
0.19	40.62	3.36	6.16	
0.21	43.58	3.85	6.58	
0.24	45.64	4.36	6.85	1100 01 01
0.27	47.74	4.88	7.13	100-04-01
0.30	49.37	5.38	7.34	30-ST-01
0.33	50.82	5.87	7.51	1100-04-01 30-5T-01 5T#9(40'-42')
0.35	52.06	6.35	7.66	21#2(40-45)
0.38	53.15	6.83	7.78	10 psi
0.41	54.54	7.30	7.94	
0.44	55.07	7.79	7.98	Bulge Failure
0.46	56.13	8.29	8.08	
0.49	57.02	8.83	8.16	
0.52	57.52	9.31	8.19	
0.55	57.92	9.78	8.21	
0.60	59.66	10.73	8.36	
0.66	59.81	11.73	8.29	
0.71	60.03	12.73	8.23	
0.77	61.62	13.71	8.35	
0.82	61.36	14.71	8.22	
		2	red by:	Jay Date: 12/8/14 Arf Date: 2/8/14

AASHTO R18

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	e		Analyst name: M. de los Reyes		
Client: AECOM		Date received: 10/22/2014			
WEI Job No.: 1100-04-01			Test date: 12/4/2014		
Soil Sample ID: 30-ST-01, ST# 9 (4	40.0-42.0ft)		Sample description: Gray SILTY CL	AY trace Gr	avel
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	6.15	in	Initial water content w =	25.09%	
Initial diameter $d_0 =$	2.83	in	Initial unit weight $\gamma_w =$	113.50	pcf
Initial area $A_0 =$	6.28	in ²	Initial dry unit weight $\gamma_d =$	90.74	pcf
Mass of wet sample and tare M _i =	1339.32	g	Initial void ratio $e_0 =$	0.912	
Mass of dry sample and tare $M_d =$	1108.30	g	Initial degree of saturation S _r =	76%	
Mass of tare $M_t =$	187.42	g			
Mass of sample Ms=	1151.90	g	Liquid Limit (%):	NA	
Estimated specific gravity Gs =	2.78		Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	20.0	psi	Sand(%):	NA	
Rate of strain =	1	%/min	Silt(%):	NA	
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	2.18				
			Deviator stress at failure $D\sigma_f =$	0.64	tsf
			Major principal stress at failure $\sigma_1 =$	2.08	tsf

	Deviator	Axial	Axial	Axial
	Stress	Strain	Force	Displacement
	(psi)	(%)	(lbs)	(in)
	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.18	0.05	1.15	0.00
a second second second second second	0.21	0.13	1.33	0.01
	0.92	0.22	5.78	0.01
Construction of the Association	1.35	0.30	8.51	0.02
	1.61	0.39	10.15	0.02
	1.79	0.48	11.31	0.03
	1.90	0.57	12.04	0.04
	2.00	0.66	12.66	0.04
	2.10	0.76	13.28	0.05
1100 -04 -0	2.18	0.85	13.79	0.05
1100 -04 -0	2.57	1.31	16.38	0.08
30-51-01	2.94	1.77	18.78	0.11
30-ST-01 ST#9(40'-42' Zopsi	3.30	2.21	21.19	0.14
20 psi	3.67	2.65	23.68	0.16
	4.05	3.09	26.24	0.19
	4.42	3.51	28.79	0.22
	4.75	3.97	31.09	0.24
	5.11	4.42	33.62	0.27
	5.45	4.87	35.97	0.30
	5.76	5.31	38.20	0.33
	6.07	5.73	40.44	0.35
	6.35	6.16	42.54	0.38
	6.64	6.58	44.64	0.41
Bulge Fail	6.87	7.03	46.42	0.43
	7.12	7.49	48.36	0.46
	7.35	7.99	50.17	0.49
	7.55	8.43	51.78	0.52
	7.75	8.87	53.41	0.55
	8.11	9.76	56.46	0.60
	8.36	10.68	58.84	0.66
	8.57	11.59	60.90	0.71
	8.78	12.47	63.06	0.77
	8.93	13.35	64.78	0.82

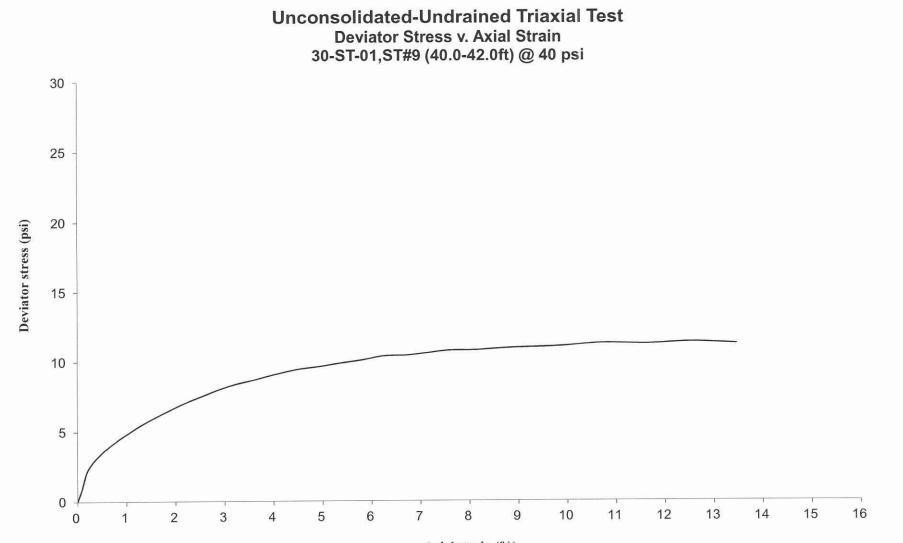
AASHTO R18

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	e		Analyst name: M. de los Reyes		
Client: AECOM		Date received: 10/22/2014			
WEI Job No.: 1100-04-01			Test date: 12/4/2014		
Soil Sample ID: 30-ST-01, ST# 9 (4	40.0-42.0ft)		Sample description: Gray SILTY CLA	AY trace Gr	ravel
Type/Condition: ST/Undisturbed					
Initial height $h_0 =$	6.15	in	Initial water content w =	24.64%	
Initial diameter $d_0 =$	2.83	in	Initial unit weight $\gamma_w =$	117.94	pcf
Initial area $A_0 =$	6.28	in ²	Initial dry unit weight $\gamma_d =$	94.63	pcf
Mass of wet sample and tare $M_i =$	1359.88	g	Initial void ratio $e_0 =$	0.833	
Mass of dry sample and tare $M_d =$	1123.30	g	Initial degree of saturation $S_r =$	82%	
Mass of tare $M_t =$	162.98	g			
Mass of sample Ms=	1196.90	g	Liquid Limit (%):	NA	-
Estimated specific gravity Gs =	2.78		Plastic Limit (%):	NA	8
Cell confining pressure $\sigma_3 =$	40.0	psi	Sand(%):	NA	
Rate of strain =	1	%/min	Silt(%):	NA	5
Proving Ring Factor =	1.000		Clay(%):	NA	
Height to diameter ratio =	2.18				
			Deviator stress at failure $D\sigma_f =$	0.82	tsf
			Major principal stress at failure $\sigma_1 =$	3.70	tsf

	Deviator	Axial	Axial	Axial
	Stress	Strain	Force	Displacement
	(psi)	(%)	(lbs)	(in)
	σ_1 - σ_3	e	F	Δh
and the state of the	0.00	0.00	0.00	0.00
and the second second	0.89	0.09	5.58	0.01
A State of the second	2.00	0.18	12.60	0.01
	2.57	0.27	16.16	0.02
1 1 4 Sec. 10	2.95	0.35	18.61	0.02
「「「「「」」	3.28	0.44	20.70	0.03
the deal	3.57	0.53	22.53	0.03
	3.82	0.62	24.15	0.04
	4.07	0.70	25.77	0.04
llon at a	4.31	0.79	27.26	0.05
1100-04-0	4.53	0.88	28.69	0.05
30-57-01	5.48	1.31	34.92	0.08
ST#9(40'-4	6.29	1.74	40.22	0.11
1.0	7.03	2.18	45.14	0.13
30 - 5T - 01 5T# 9(40'-4 40psi	7.64	2.62	49.31	0.16
	8.25	3.09	53.47	0.19
	8.65	3.56	56.33	0.22
	9.07	4.02	59.38	0.25
	9.41	4.47	61.91	0.27
	9.62	4.92	63.59	0.30
	9.87	5.36	65.52	0.33
	10.08	5.80	67.26	0.36
	10.38	6.26	69.54	0.39
	10.42	6.71	70.21	0.41
Bulge Fai	10.60	7.16	71.72	0.44
	10.77	7.59	73.23	0.47
	10.79	8.07	73.72	0.50
	10.88	8.50	74.69	0.52
	10.95	8.94	75.58	0.55
	11.05	9.84	76.98	0.61
	11.27	10.73	79.33	0.66
	11.21	11.62	79.72	0.72
	11.35	12.53	81.54	0.77
	11.23	13.46	81.51	0.83


Checked by: ______ Life _____ Date: _____ 12/8/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

Axial strain (%)

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 297 / ASTM D 4767

	Circle Interchange Reconstruction AECOM	on Tested by: Prepared by:	Wang Engineering, Inc. M. Snider
Soil Sample ID:	Boring 30-RWB-03, ST#4, 28.5' t	to 30' Test date:	October 17, 2014
Sample description:	Gray SILTY CLAY (CL)	WEI Job No.:	1100-04-01
Initial sample height:	5.67 in	Tare mass:	13.60 g
Initial sample diameter:	2.84 in	Measured sample mass w/out Tare:	1220.60 g
Initial sample mass:	1220.60 g	Tare and final sample mass:	1224.50 g
Soil specific gravity:	2.75 (estimated)	Tare and dry sample mass:	995.60 g
Dry sample mass:	982.00 g		
Final sample mass:	1210.90 g	Saturation (B) coefficient:	99%
Initial water content:	24.30% (specimen)	Rate of loading:	1.0E-02 %/min
Initial unit weight:	129.22 pcf	Volume change during consolidation:	0.68 in ³
Initial dry unit weight:	103.96 pcf	Void ratio after consolidation:	0.619
Initial void ratio:	0.651	Dry unit weight after consolidation:	105.98 pcf
Initial saturation:	102.7%	Height after consolidation:	5.63 in
Final water content:	23.31% (specimen)	Volume after consolidation:	35.30 in ³
Liquid Limit, %:	34	Area after consolidation:	6.27 in^2
Plastic Limit, %:	17	Time at 50% Consolidation:	43.70 min
% Sand:	16.3		
% Silt:	48.1	Effective consolidation stress:	10.0 psi
% Clay:	30.5	Shear modulus:	399.01 psi

Axial displacement (Dh)	Axial force (F)	Pore pressure (u)	Axial strain (eps)	Deviator stress	Total vertical stress	Effective vertical stress	Effective horizontal stress	Shear stress, q=q'	Effective spherical stress, p'	Total spherical stress, p	Effective Principal Stress Ratio
in	pound	psi	%	psi	psi	psi	psi	psi	psi	psi	psi
0.00	0.000	0.00	0.00	0.0	10.0	10.0	10.00	0.00	10.00	10.00	1.00
0.01	21.327	1.77	0.10	3.4	13.4	11.6	8.23	1.70	9.93	11.70	1.41
0.01	30.154	2.84	0.20	4.8	14.8	12.0	7.16	2.40	9.56	12.40	1.67
0.02	35.240	3.40	0.30	5.6	15.6	12.2	6.60	2.80	9.40	12.80	1.85
0.02	38.822	3.81	0.40	6.2	16.2	12.4	6.19	3.08	9.27	13.08	2.00
0.03	41.851	4.09	0.50	6.6	16.6	12.5	5.91	3.32	9.23	13.32	2.12
0.03	44.033	4.31	0.60	7.0	17.0	12.7	5.69	3.49	9.18	13.49	2.23
0.04	46.127	4.47	0.70	7.3	17.3	12.8	5.53	3.65	9.18	13.65	2.32
0.05	48.278	4.59	0.80	7.6	17.6	13.0	5.41	3.82	9.23	13.82	2.41
0.05	50.500	4.72	0.90	8.0	18.0	13.3	5.28	3.99	9.27	13.99	2.51
0.06	52.643	4.80	1.00	8.3	18.3	13.5	5.20	4.16	9.35	14.16	2.60
0.08	58.375	5.04	1.50	9.2	19.2	14.1	4.96	4.59	9.55	14.59	2.85
0.11	63.494	5.10	2.00	9.9	19.9	14.8	4.90	4.96	9.86	14.96	3.02
0.14	68.063	5.04	2.50	10.6	20.6	15.5	4.96	5.29	10.25	15.29	3.13
0.17	70.323	4.94	3.00	10.9	20.9	15.9	5.06	5.44	10.50	15.44	3.15
0.20	72.049	4.85	3.50	11.1	21.1	16.2	5.15	5.54	10.69	15.54	3.15
0.23	74.417	4.74	4.00	11.4	21.4	16.7	5.26	5.70	10.95	15.70	3.17
0.26	77.403	4.68	4.50	11.8	21.8	17.1	5.32	5.89	11.22	15.89	3.21
0.28	78.221	4.59	5.00	11.9	21.9	17.3	5.41	5.93	11.34	15.93	3.19
0.31	80.973	4.49	5.50	12.2	22.2	17.7	5.51	6.10	11.61	16.10	3.21
0.34	83.021	4.42	6.00	12.4	22.4	18.0	5.58	6.22	11.81	16.22	3.23
0.37	83.097	4.33	6.50	12.4	22.4	18.1	5.67	6.20	11.86	16.20	3.19
0.40	83.782	4.23	7.00	12.4	22.4	18.2	5.77	6.21	11.98	16.21	3.15
0.43	85.298	4.13	7.50	12.6	22.6	18.4	5.87	6.29	12.16	16.29	3.15
0.45	87.749	4.07	8.00	12.9	22.9	18.8	5.93	6.44	12.37	16.44	3.17
0.48	87.854	3.98	8.50	12.8	22.8	18.8	6.02	6.41	12.43	16.41	3.13
0.51	89.666	3.92	9.00	13.0	23.0	19.1	6.08	6.51	12.59	16.51	3.14
0.54	90.655	3.85	9.50	13.1	23.1	19.2	6.15	6.54	12.69	16.54	3.13
0.57	90.272	3.78	10.00	13.0	23.0	19.2	6.22	6.48	12.70	16.48	3.08
0.62	92.152	3.66	11.00	13.1	23.1	19.4	6.34	6.54	12.88	16.54	3.06
0.68	93.932	3.53	12.00	13.2	23.2	19.7	6.47	6.59	13.06	16.59	3.04
0.74	95.639	3.48	13.00	13.3	23.3	19.8	6.52	6.64	13.15	16.64	3.04
0.79	95.932	3.45	14.00	13.2	23.2	19.7	6.55	6.58	13.13	16.58	3.01
0.85	97.761	3.36	15.00	13.3	23.3	19.9	6.64	6.63	13.27	16.63	3.00

Notes:

p=s1+s3/2

q=\$1-\$3/2 p'=S1'+S3'/2 q'=S1'-S3'/2 Wet Method Saturation

P:\1210201\LWS_Wang_MLS_1650401TXCCU_20140506

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 297 / ASTM D 4767

	Circle Interchange Reconstructi AECOM	on Tested by: Prepared by:	Wang Engineering, Inc. M. Snider
Soil Sample ID:	Boring 30-RWB-03, ST#4, 28.5'		October 17, 2014
Sample description:	Gray SILTY CLAY (CL)	WEI Job No.:	1100-04-01
Initial sample height:	5.58 in	Tare mass:	163.02 g
Initial sample diameter:	2.81 in	Measured sample mass w/out Tare:	1180.70 g
Initial sample mass:	1180.70 g	Tare and final sample mass:	1319.20 g
Soil specific gravity:	2.75 (estimated)	Tare and dry sample mass:	1112.50 g
Dry sample mass:	949.48 g		
Final sample mass:	1156.18 g	Saturation (B) coefficient:	99%
Initial water content:	24.35% (specimen)	Rate of loading:	1.0E-02 %/min
Initial unit weight:	130.17 pcf	Volume change during consolidation:	1.55 in ³
Initial dry unit weight:	104.68 pcf	Void ratio after consolidation:	0.566
Initial void ratio:	0.639	Dry unit weight after consolidation:	109.61 pcf
Initial saturation:	104.7%	Height after consolidation:	5.50 in
Final water content:	21.77% (specimen)	Volume after consolidation:	33.00 in ³
Liquid Limit, %:	34	Area after consolidation:	6.00 in^2
Plastic Limit, %:	17	Time at 50% Consolidation:	147.96 min
% Sand:	16.3		
% Silt:	48.1	Effective consolidation stress:	20.0 psi
% Clay:	30.5	Shear modulus:	554.42 psi

Axial displacement (Dh)	Axial force (F)	Pore pressure (u)	Axial strain (eps)	Deviator stress	Total vertical stress	Effective vertical stress	Effective horizontal stress	Shear stress, q=q'	Effective spherical stress, p'	Total spherical stress, p	Effective Principal Stress Ratio
in	pound	psi	%	psi	psi	psi	psi	psi	psi	psi	psi
0.00	0.000	0.00	0.00	0.0	20.0	20.0	20.00	0.00	20.00	20.00	1.00
0.01	27.865	2.41	0.10	4.6	24.6	22.2	17.59	2.32	19.91	22.32	1.26
0.01	39.947	4.04	0.20	6.6	26.6	22.6	15.96	3.32	19.28	23.32	1.42
0.02	47.125	5.19	0.30	7.8	27.8	22.6	14.81	3.91	18.73	23.91	1.53
0.02	52.355	6.02	0.40	8.7	28.7	22.7	13.98	4.34	18.33	24.34	1.62
0.03	56.180	6.68	0.50	9.3	29.3	22.6	13.32	4.66	17.98	24.66	1.70
0.03	59.335	7.22	0.60	9.8	29.8	22.6	12.78	4.91	17.69	24.91	1.77
0.04	62.043	7.70	0.70	10.3	30.3	22.6	12.30	5.13	17.43	25.13	1.83
0.04	64.279	8.08	0.80	10.6	30.6	22.5	11.92	5.31	17.23	25.31	1.89
0.05	66.371	8.42	0.90	11.0	31.0	22.5	11.58	5.48	17.06	25.48	1.95
0.06	68.343	8.70	1.00	11.3	31.3	22.6	11.30	5.64	16.93	25.64	2.00
0.08	76.590	9.56	1.50	12.6	32.6	23.0	10.44	6.29	16.73	26.29	2.20
0.11	83.223	10.15	2.00	13.6	33.6	23.4	9.85	6.80	16.65	26.80	2.38
0.14	87.185	10.44	2.50	14.2	34.2	23.7	9.56	7.08	16.64	27.08	2.48
0.17	91.163	10.54	3.00	14.7	34.7	24.2	9.46	7.37	16.82	27.37	2.56
0.20	94.672	10.55	3.50	15.2	35.2	24.7	9.45	7.61	17.06	27.61	2.61
0.22	98.308	10.54	4.00	15.7	35.7	25.2	9.46	7.86	17.33	27.86	2.66
0.25	100.616	10.53	4.50	16.0	36.0	25.5	9.47	8.01	17.47	28.01	2.69
0.28	103.593	10.46	5.00	16.4	36.4	25.9	9.54	8.20	17.74	28.20	2.72
0.31	106.695	10.38	5.50	16.8	36.8	26.4	9.62	8.40	18.02	28.40	2.75
0.33	108.078	10.30	6.00	16.9	36.9	26.6	9.70	8.46	18.17	28.46	2.74
0.36	109.794	10.20	6.50	17.1	37.1	26.9	9.80	8.55	18.35	28.55	2.75
0.39	111.815	10.10	7.00	17.3	37.3	27.2	9.90	8.66	18.57	28.66	2.75
0.42	113.620	10.00	7.50	17.5	37.5	27.5	10.00	8.76	18.76	28.76	2.75
0.45	115.300	9.86	8.00	17.7	37.7	27.8	10.14	8.84	18.98	28.84	2.74
0.47	116.907	9.75	8.50	17.8	37.8	28.1	10.25	8.91	19.16	28.91	2.74
0.50	119.099	9.65	9.00	18.1	38.1	28.4	10.35	9.03	19.38	29.03	2.74
0.53	120.059	9.57	9.50	18.1	38.1	28.5	10.43	9.05	19.49	29.05	2.74
0.56	121.123	9.42	10.00	18.2	38.2	28.7	10.58	9.08	19.66	29.08	2.72
0.61	123.174	9.25	11.00	18.3	38.3	29.0	10.75	9.13	19.89	29.13	2.70
0.67	124.986	9.20	12.00	18.3	38.3	29.1	10.80	9.16	19.96	29.16	2.70
0.73	127.297	9.09	13.00	18.5	38.5	29.4	10.91	9.23	20.14	29.23	2.69
0.78	128.889	8.95	14.00	18.5	38.5	29.5	11.05	9.23	20.29	29.23	2.67
0.84	129.935	8.90	15.00	18.4	38.4	29.5	11.10	9.20	20.31	29.20	2.66
lotes:						Jer		1-	and the second second second		
=s1+s3/2	q=\$1-\$3/2			Prepa	red by:	Sa	7	Date: 10	120114	-	
'=S1'+S3'/2 Vet Method Sa	q'=s1'-s3'/2 ituration			Cheel	ked by:	At	1	Date:	120/14	-	

CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 297 / ASTM D 4767

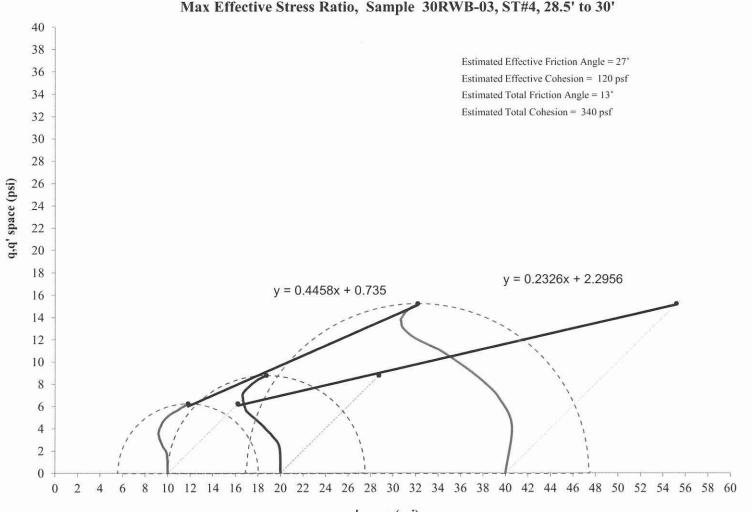
	Circle Interchange Reconstructi AECOM	on Tested by: Prepared by:	Wang Engineering, Inc. M. Snider
Soil Sample ID:	Boring 30-RWB-03, ST#4, 28.5'		October 17, 2014
Sample description:	Gray SILTY CLAY (CL)	WEI Job No.:	1100-04-01
Initial sample height:	5.55 in	Tare mass:	250.10 g
Initial sample diameter:	2.84 in	Measured sample mass w/out Tare:	1241.80 g
Initial sample mass:	1241.80 g	Tare and final sample mass:	1454.10 g
Soil specific gravity:	2.75 (estimated)	Tare and dry sample mass:	1277.40 g
Dry sample mass:	1027.30 g		
Final sample mass:	1204.00 g	Saturation (B) coefficient:	99%
Initial water content:	20.88% (specimen)	Rate of loading:	1.0E-02 %/min
Initial unit weight:	134.81 pcf	Volume change during consolidation:	2.02 in^3
Initial dry unit weight:	111.53 pcf	Void ratio after consolidation:	0.450
Initial void ratio:	0.539	Dry unit weight after consolidation:	118.34 pcf
Initial saturation:	106.6%	Height after consolidation:	5.44 in
Final water content:	17.20% (specimen)	Volume after consolidation:	33.07 in ³
Liquid Limit, %:	34	Area after consolidation:	6.08 in ²
Plastic Limit, %:	17	Time at 50% Consolidation:	134.46 min
% Sand:	16.3		
% Silt:	48.1	Effective consolidation stress:	40.0 psi
% Clay:	30.5	Shear modulus:	1123.92 psi

Axial displacement (Dh)	Axial force (F)	Pore pressure (u)	Axial strain (eps)	Deviator stress	Total vertical stress	Effective vertical stress	Effective horizontal stress	Shear stress, q=q'	Effective spherical stress, p'	Total spherical stress, p	Effective Principa Stress Ratio
in	pound	psi	%	psi	psi	psi	psi	psi	psi	psi	psi
0.00	0.000	0.00	0.00	0.0	40.0	40.0	40.00	0.00	40.00	40.00	1.00
0.01	51.882	3.69	0.10	8.5	48.5	44.8	36.31	4.26	40.57	44.26	1.23
0.01	82.417	7.35	0.20	13.5	53.5	46.2	32.65	6.77	39.41	46.77	1.41
0.02	98.057	9.81	0.30	16.1	56.1	46.3	30.19	8.04	38.23	48.04	1.53
0.02	108.560	11.66	0.40	17.8	57.8	46.1	28.34	8.89	37.23	48.89	1.63
0.03	116.589	13.17	0.50	19.1	59.1	45.9	26.83	9.54	36.38	49.54	1.71
0.03	122.916	14.40	0.60	20.1	60.1	45.7	25.60	10.05	35.65	50.05	1.79
0.04	128.382	15.45	0.70	21.0	61.0	45.5	24.55	10.49	35.03	50.49	1.85
0.04	132.763	16.34	0.80	21.7	61.7	45.3	23.66	10.83	34.50	50.83	1.92
0.05	136.494	17.13	0.90	22.3	62.3	45.1	22.87	11.13	34.00	51.13	1.97
0.06	139.315	17.81	1.00	22.7	62.7	44.9	22.19	11.35	33.53	51.35	2.02
0.08	149.668	20.18	1.50	24.3	64.3	44.1	19.82	12.13	31.95	52.13	2.22
0.11	158.081	21.59	2.00	25.5	65.5	43.9	18.41	12.74	31.15	52.74	2.38
0.14	164.429	22.40	2.50	26.4	66.4	44.0	17.60	13.19	30.79	53.19	2.50
0.17	170.712	22.89	3.00	27.2	67.2	44.4	17.11	13.62	30.73	53.62	2.59
0.19	173.876	23.13	3.50	27.6	67.6	44.5	16.87	13.80	30.67	53.80	2.64
0.22	180.271	23.29	4.00	28.5	68.5	45.2	16.71	14.24	30.95	54.24	2.70
0.25	184.170	23.37	4.50	28.9	68.9	45.6	16.63	14.47	31.10	54.47	2.74
0.28	185,727	23.36	5.00	29.0	69.0	45.7	16.64	14.51	31.16	54.51	2.74
0.31	189.456	23.31	5.50	29.5	69.5	46.1	16.69	14.73	31,42	54.73	2.76
0.33	190.888	23.29	6.00	29.5	69.5	46.2	16.71	14.76	31.47	54.76	2.77
0.36	194.829	23.21	6.50	30.0	70.0	46.8	16.79	14.99	31.78	54.99	2.78
0.39	195.711	23.10	7.00	29.9	69.9	46.8	16.90	14.97	31.87	54.97	2.77
0.42	199.881	23.00	7.50	30.4	70.4	47.4	17.00	15.21	32.21	55.21	2.79
0.44	202.321	22.85	8.00	30.6	70.6	47.8	17.15	15.31	32.46	55.31	2.79
0.47	202.734	22.66	8.50	30.5	70.5	47.9	17.34	15.26	32.60	55.26	2.76
0.50	205.242	22.63	9.00	30.7	70.7	48.1	17.37	15.36	32.73	55.36	2.77
0.53	206.156	22.45	9.50	30.7	70.7	48.2	17.55	15.35	32.90	55.35	2.75
0.55	208.356	22.47	10.00	30.9	70.9	48.4	17.53	15.43	32.96	55.43	2.76
0.61	212.113	22.32	11.00	31.1	71.1	48.7	17.68	15.53	33.21	55.53	2.76
0.67	214.243	22,10	12.00	31.0	71.0	48.9	17.90	15.51	33.41	55.51	2.73
0.72	215.481	22.00	13.00	30.8	70.8	48.8	18.00	15.42	33.42	55.42	2.71
0.74	215.974	21.98	13.30	30.8	70.8	48.8	18.02	15.40	33.42	55.40	2.71
0.75	217.803	22.00	13.60	31.0	71.0	49.0	18.00	15.48	33.48	55.48	2.72

Notes:

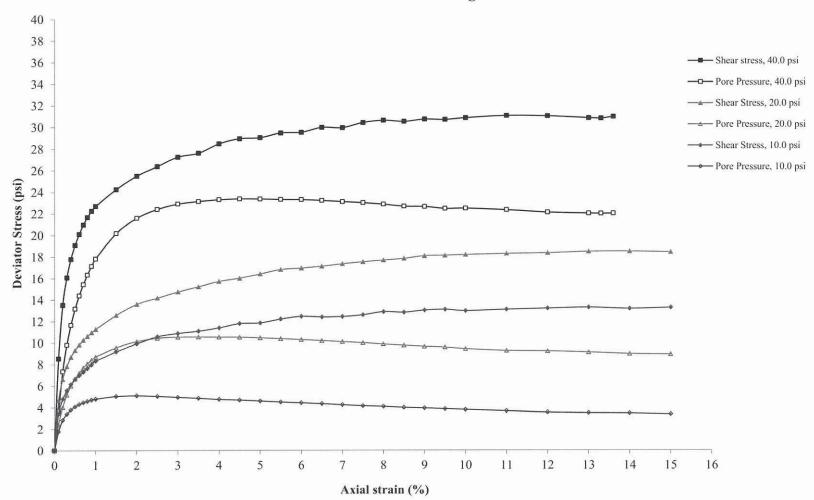
p=s1+s3/2

p'=s1'+s3'/2 q'=s1'-s3'/2 Wet Method Saturation


q=\$1-\$3/2

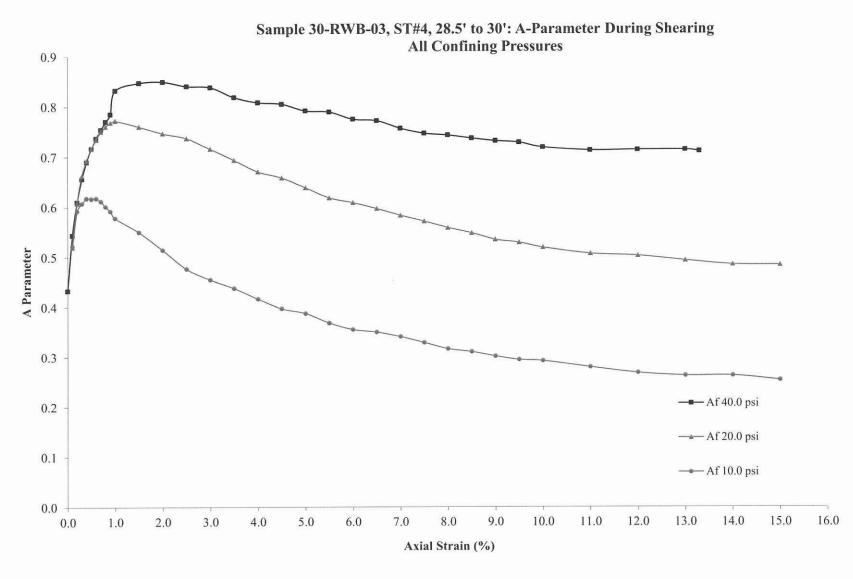
Prepared by: _ Checked by:

Jan Date: 10/20/14 LL Date: 16/20/14

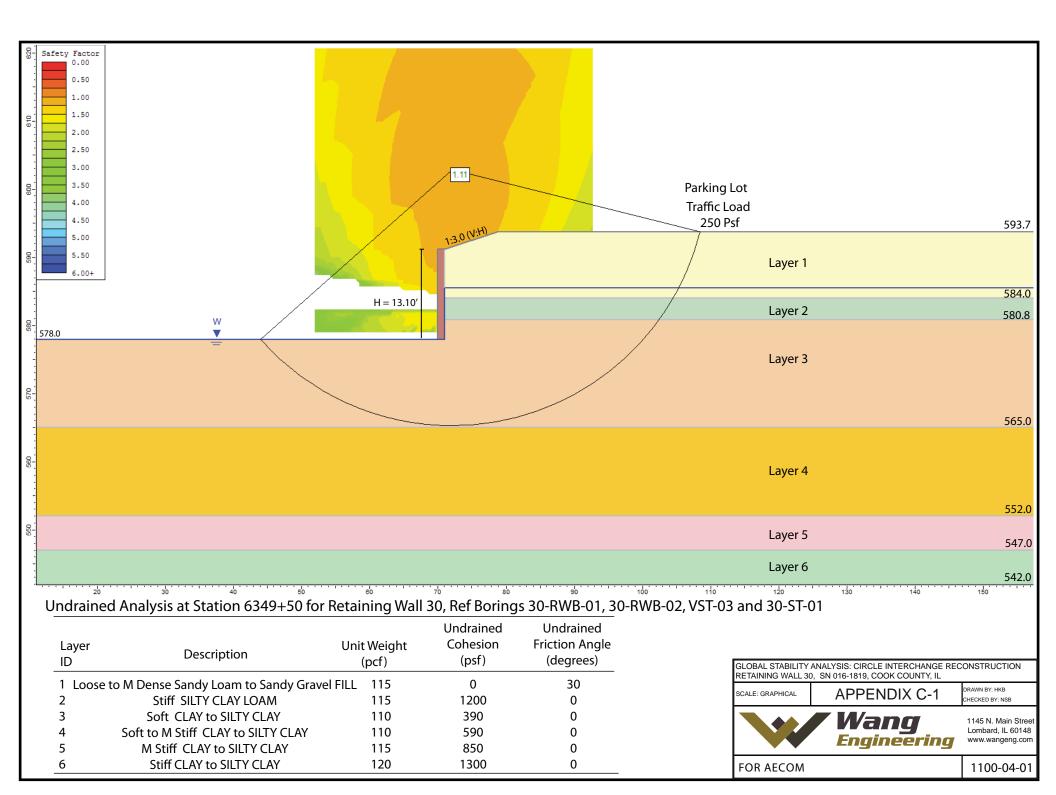


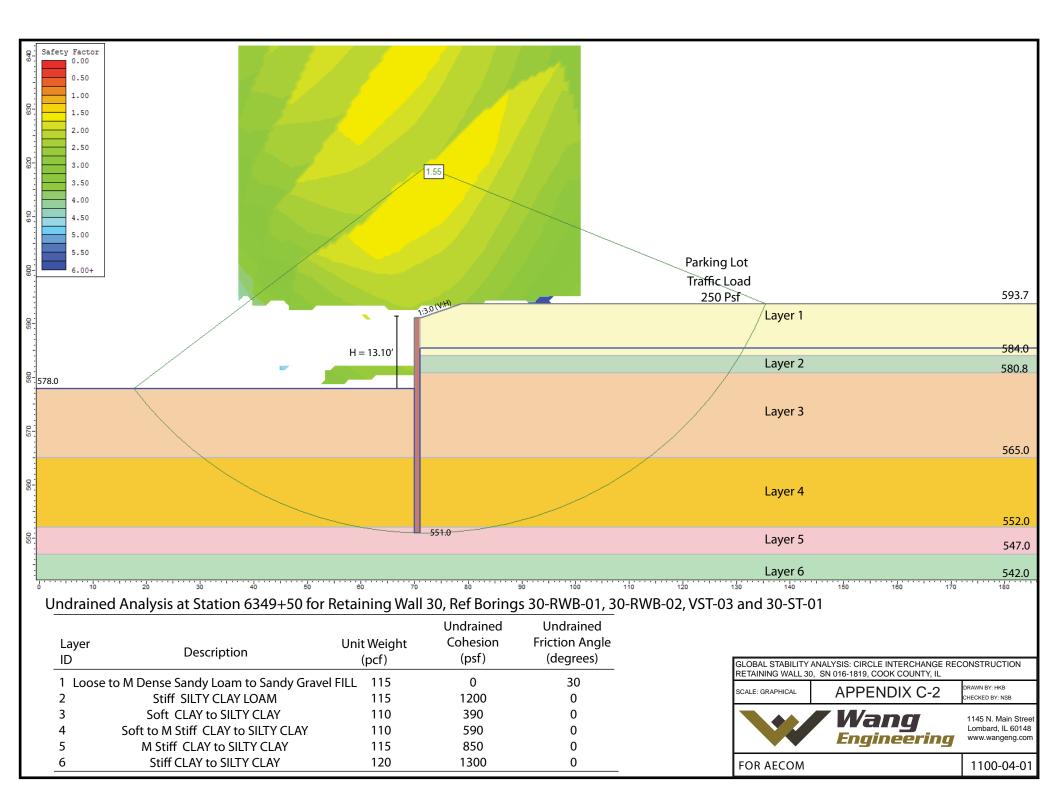
Triaxial Compression Total and Effective Stress Paths at Failure (p-q Space) Max Effective Stress Ratio, Sample 30RWB-03, ST#4, 28.5' to 30'

p,p' space (psi)

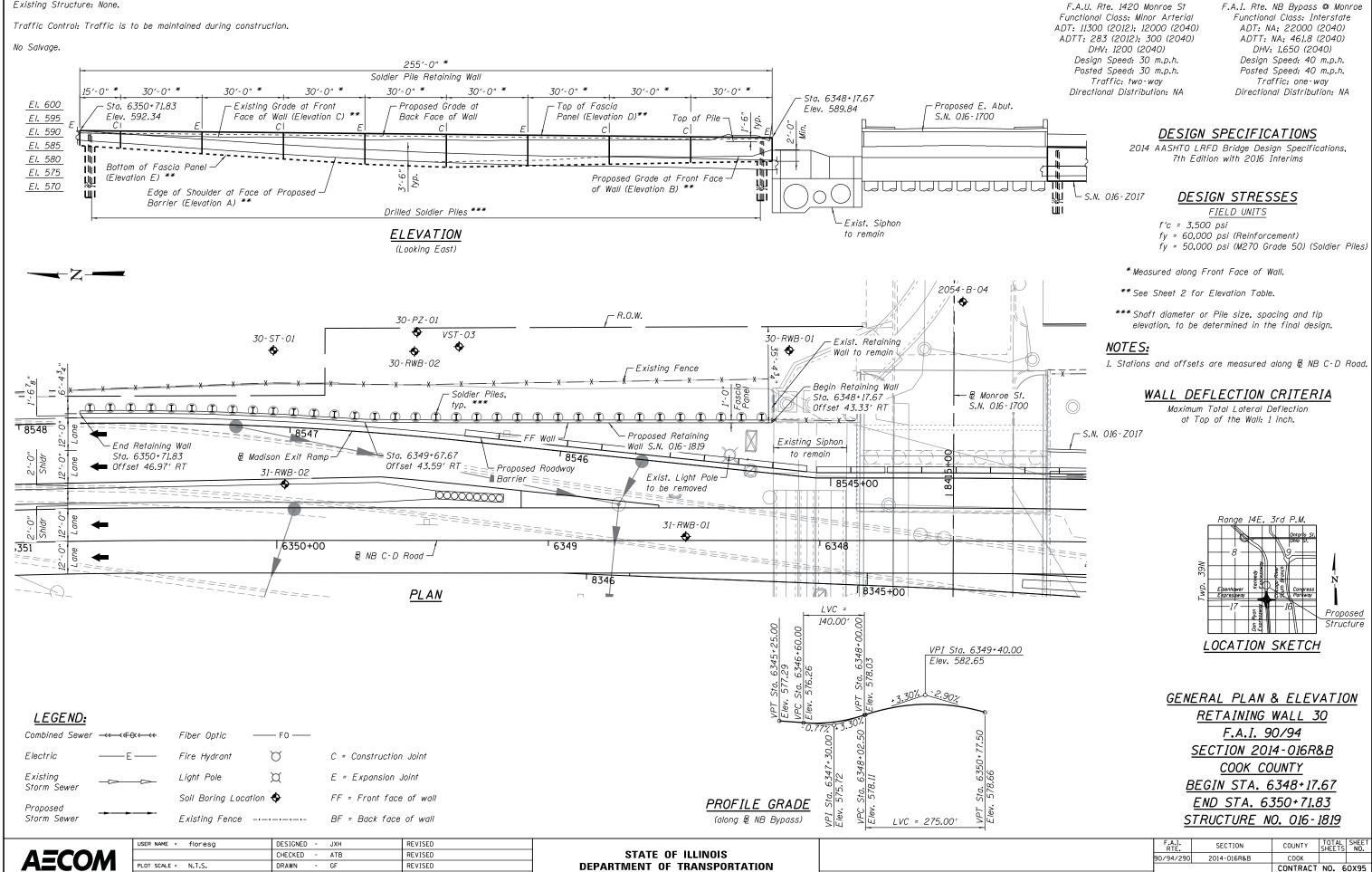


Sample 30-RWB-03, ST#4, 28.5' to 30': Stress v. Strain and Pore Pressure v. Strain Curves All Confining Pressures



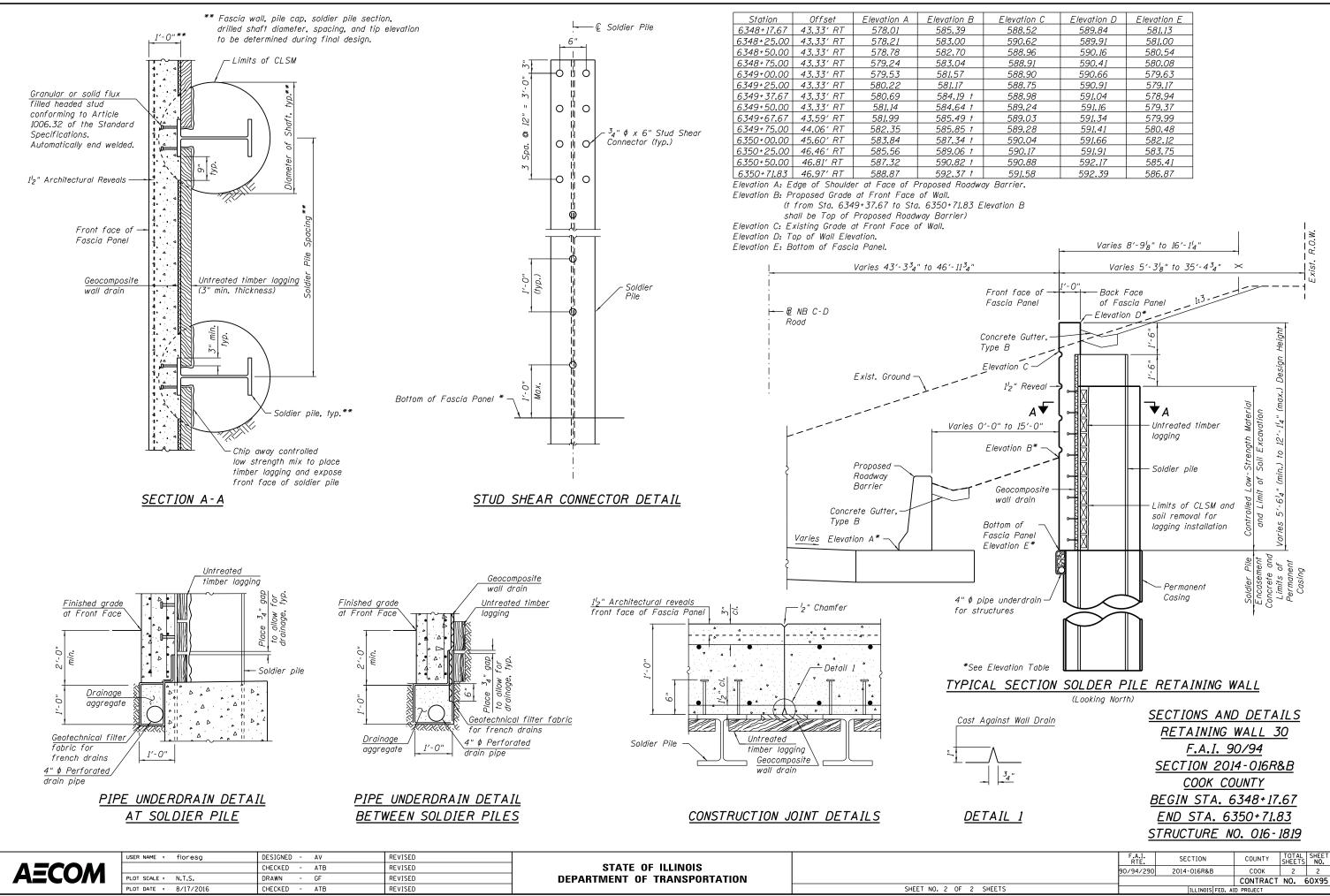


APPENDIX C



APPENDIX D

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982 Bench Mark: Chisel "X" on east side of I-90 ±80' S of Monroe Street on SE corner of Handhole on concrete. Elevation 578,58'.


Existing Structure: None.

PLOT SCALE = N.T.S. DRAWN GF REVISED **DEPARTMENT OF TRANSPORTATION** SHEET NO. 1 OF 2 SHEETS PLOT DATE = 8/17/2016 CHECKED - DD REVISED

HIGHWAY CLASSIFICATION

FED ATD BRO IECT

В	Elevation C	Elevation D	Elevation E
	588.52	589.84	581.13
	590.62	589.91	581.00
	588.96	590.16	580.54
	588.91	590.41	580.08
	588.90	590.66	579.63
	588.75	590.91	579.17
t	588.98	591.04	578.94
†	589.24	591 . 16	579.37
†	589.03	591.34	579.99
†	589.28	591.41	580.48
t	590.04	591.66	582.12
t	590.17	591.91	583.75
t	590.88	592.17	585.41
†	591 . 58	592.39	586.87
du	au Parrior		

APPENDIX E

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

Purpose :

Received & y

Assumptions: 1)

Notations ?

Evaluations

	5/12-11	
Wang	Date: 8/17/16	Sheet: of
Engineeri		
1145 North Main Street	Project Number: <u>1100 - 04 - 01</u>	Client Name: <u>ABCOM</u>
_ombard, Illinois 60148 Phone: (630)-953-9928	Project Name: Circle Inter	change - Wall SO
	Ground Movement Estimat Retaining Uall 30	tej.
I Dose : To estima	the the surgare around mayon en	+ at the parting los
located e proposed a	ate the surpace ground movemen as t of the wall induced by , wall 29.	the movement of the
	Jand O' Rourke T (1990)" Const Sile Walls	ruction Induced Movement
2) OU, (9) ground	, Hsieh, P. 5, and Chiou, O. 1. (199 Surface settlements during excavat V.30, P.758-767	3), "Characteristics of tion." Canadian Beotechnical
31 Wang . 7	. Xu and Wars W (2009), " Wall excavations in Shanghai Sopt so onmat Engineering, V. 136, P983-	and accured makements due
sumptions: 1] Based on is 17 pe Row as - 2] Wall he 3] There is	trow section drawing at Sta. set away prom the proposed wa the start of the parking lot. ight if 13 peet. no existing wall penind the	6349 +50, Parking lot 11 30, we assume Existing proposed wall
SU = 0	aximum lateral displacement of round surface softlement laximum ground surface softlemeni	
Keymirement	Maximum ground movement i J 0.25 inch (SV). Solve for maximum wall. Sv = 0.25 inch	
valvations:		
From Figure 6	. 14, select a ratio Sum - 1	1.0 (conservative)

Then, From Figure 11 => For d = 17 = 1.31 = 1.3 H = 13 = 1.31 Lyget SV = 0.55 (Clough and O'Routhe (1990))

Date: 8/17/2016_____ Sheet: 2_ of 5 Calculation By: <u>A, Kurnia</u> Approved By: <u>N. Balakumavan</u> Project Number: <u>1100-04-01</u> Client Name: <u>A E Con</u> Project Name: Circle Interchange - Wall 30

1145 North Main Street Lombard, Illinois 60148 Phone: (630)-953-9928

Assume -> Shm = 1.0 inch
Lo SV = 0.55 Shon = 0.55 (1.0) = 0.55 inches
Asume John = 0.45 inch
$L_{2} = 0.55 (0.45) = 0.2475'' < 0.25''$
Conclution !
Based on our evaluations, the maximum wall deplection that
will result in 0.25" ground movement at the parting lot is 0.45"
There fore, to limit ground movement at the particity lot to 0.25",
the wall deplection should be no more than 0.45"
Recommendation "
1) The empirical data is based on medium to sope clags, there may be sand and stiffer clay layer behind the wall
21 For Final design, perform finite element modelling to evaluate the movements and settlements under the proposed construction stages for the proposed under
31 Place instrumentation on the wall and ground such as inclinenters: and ground survey monuments to monitor movements and diffection during construction.

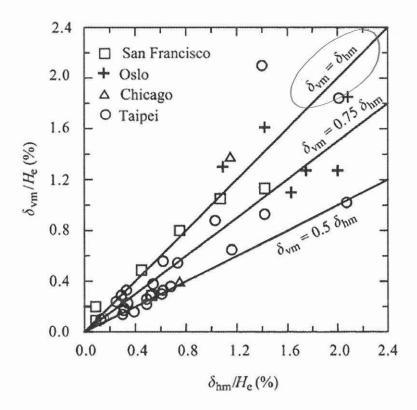


Figure 6.14 Maximum ground surface settlement and lateral wall deflection (Ou et al., 1993).

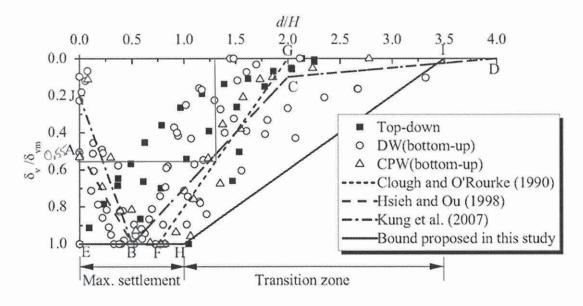
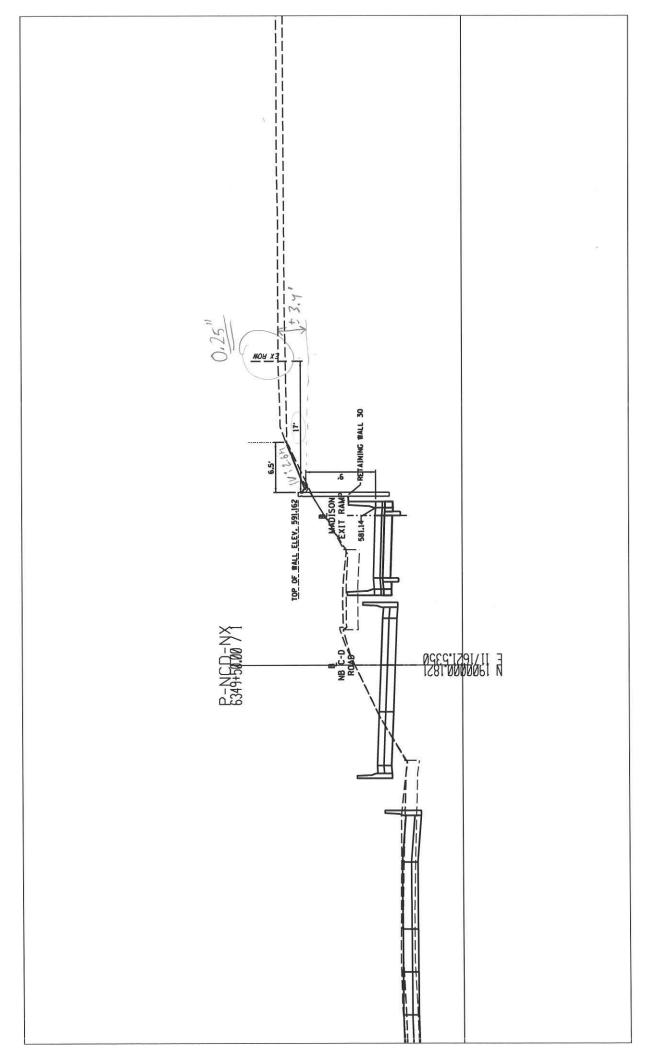
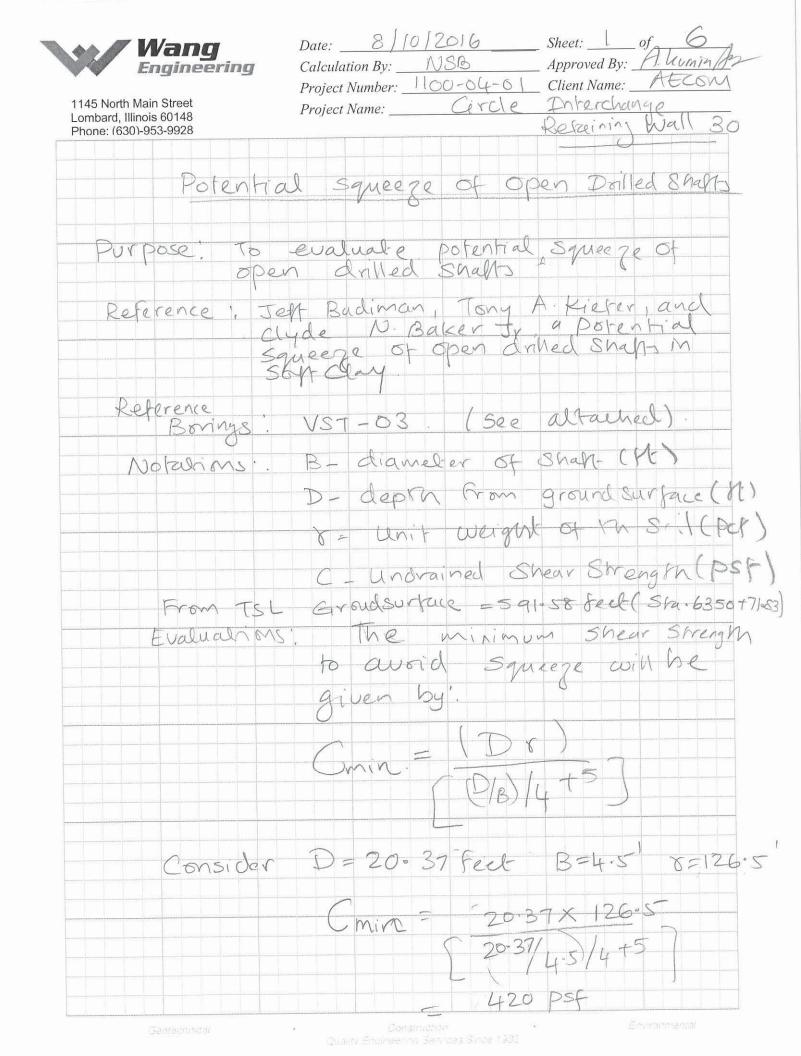
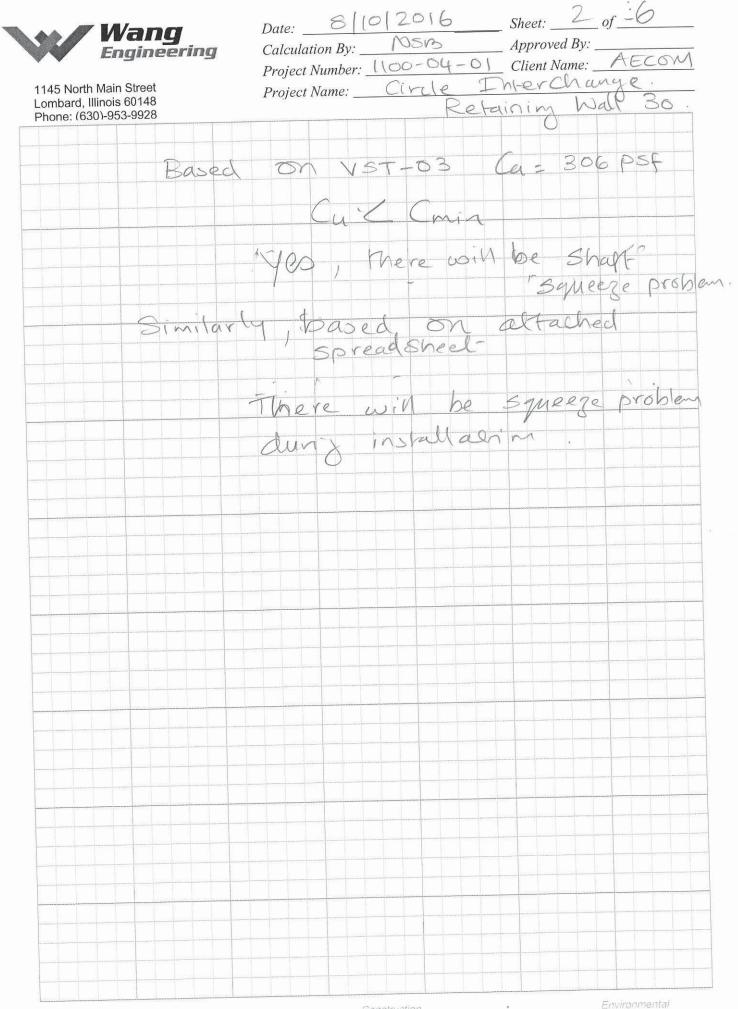



Fig. 11. Relationship between ground settlement normalized by maximum settlement and normalized distance from wall




5/5

APPENDIX F

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

POTENTIAL SQUEEZE OF OPEN DRILLED SHAFTS

Refrence: Jeff Budiman, Tony Kiefer, and Clyde Baker - Potental Squeeze Of Open Drilled Shafts in Soft Soils

I-90/94 and I-290/Congress Parkway – Circle Interchange Job No. D-91-227-13

Retaining Wall 30 SN 016-1819

Depth from top of gr Boring Reference	Top Boring Elevation (feet)	D (feet)	Test Elev. (feet)	VST Su- Undisturbed (psf)	VST Su- Remolded (psf)	Minimum Shear Strength to avoid Squeeze (psf)	Squeeze Problem
VST-03	593.21	17.87	573.71	426	371	377	NO
VST-03	593.21	20.37	571.21	371	306	420	==YES==
VST-03	593.21	22.87	568.71	382	317	461	==YES==
VST-03	593.21	25.37	566.21	393	339	501	==YES==
VST-03	593.21	27.87	563.71	623	371	538	NO
VST-03	593.21	30.37	561.21	535	328	574	==YES==
VST-03	593.21	32.87	558.71	535	393	609	==YES==
VST-03	593.21	35.37	556.21	655	404	642	NO
VST-03	593.21	37.87	553.71	623	382	674	==YES=
VST-03	593.21	40.37	551.21	852	459	705	NO
VST-03	593.21	42.87	548.71	928	601	735	NO
VST-03	593.21	45.37	546.21	1267	633	763	NO

 Cmin = (D*γ)/[(D/B)/4+5]
 591.58 feet

 Assumed top of Drilled Shaft elevation
 591.58 feet

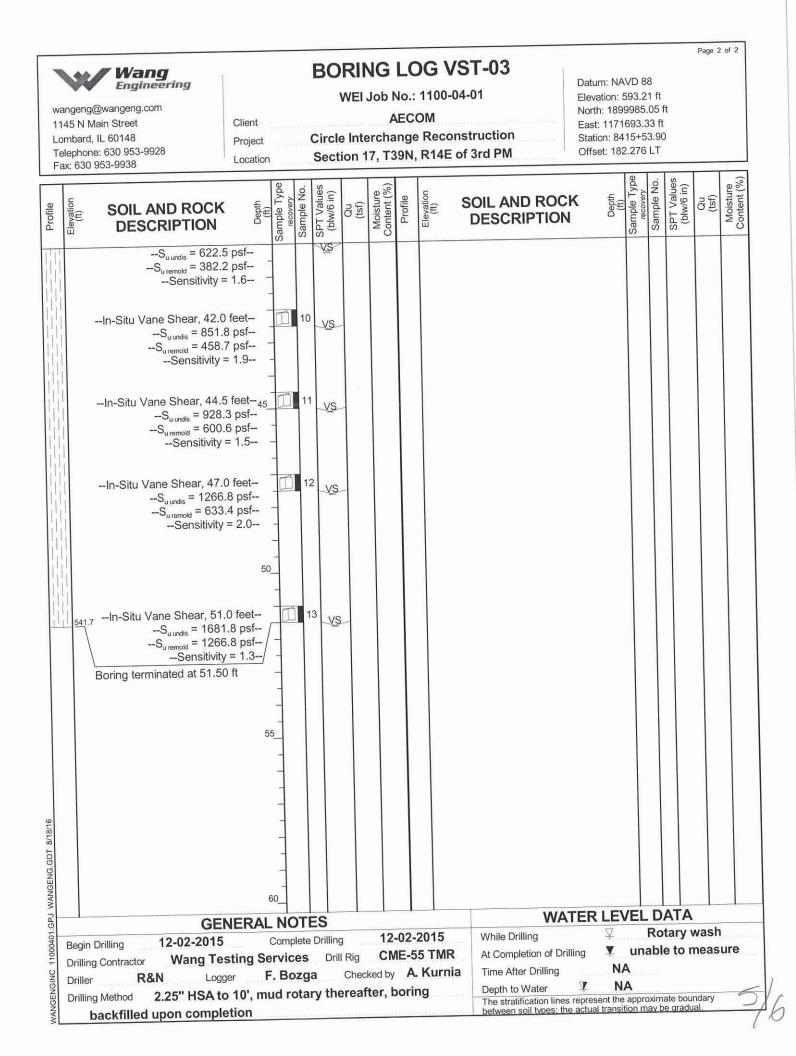
 Shear Strength from
 VST-03

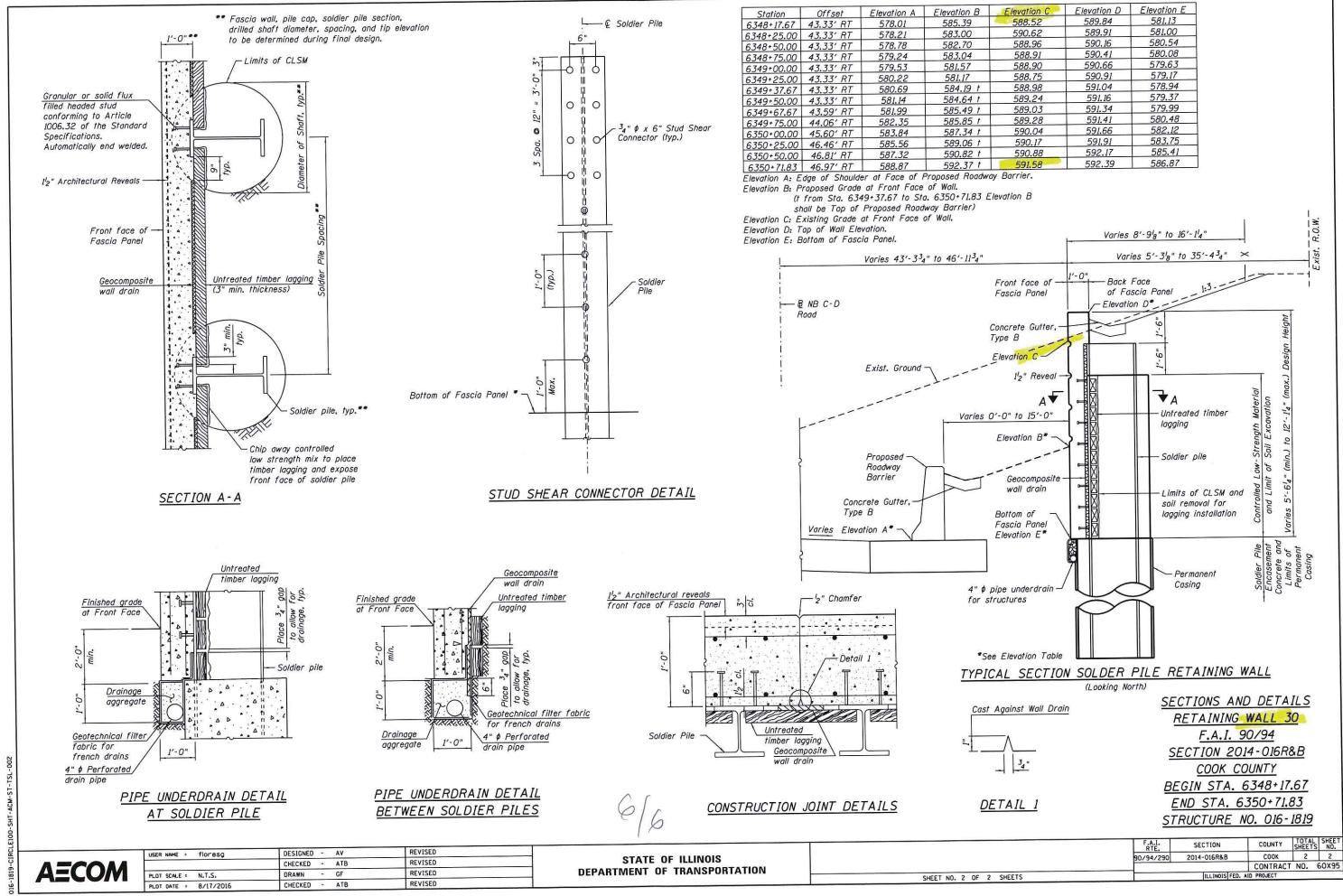
 Shaft Diameter, B
 3.5 feet

 Soil Unit Weight, γ
 126.5 pcf

 D = Depth from top of ground elevation at shaft to top of vane shear test elevation

Boring Reference	Top Boring Elevation (feet)	D (feet)	Test Elev. (feet)	VST Su- Undisturbed (psf)	VST Su- Remolded (psf)	Minimum Shear Strength to avoid Squeeze (psf)	Squeeze Problem
VST-03	593.21	17.87	573.71	426	371	360	NO
VST-03	593.21	20.37	571.21	371	306	399	==YES==
VST-03	593.21	22.87	568.71	382	317	436	==YES==
VST-03	593.21	25.37	566.21	393	339	471	==YES==
VST-03	593.21	27.87	563.71	623	371	504	NO
VST-03	593.21	30.37	561.21	535	328	536	==YES==
VST-03	593.21	32.87	558.71	535	393	566	==YES==
VST-03	593.21	35.37	556.21	655	404	594	NO
	593.21	37.87	553.71	623	382	622	NO
VST-03	593.21	40.37	551.21	852	459	648	NO
VST-03		40.37	548.71	928	601	673	NO
VST-03 VST-03	593.21 593.21	42.87	546.21	1267	633	696	NO


Cmin = (D*γ)/[(D/B)/4+5] Assumed top of Drilled Shaft elevation Shear Strength from VST-03 Shaft Diameter, B 2.5 feet Soil Unit Weight, γ 126.5 pcf


591.58 feet

Boring Reference	Top of Boring Elev. (feet)	Vane Shear Test Depth, D (feet)	Test Elev. (feet)	VST Su- Undisturbed (psf)	VST Su- Remolded (psf)	Minimum Shear Strength to avoid Squeeze (psf)	Squeeze Problem	
VST-03	593.21	17.87	573.71	426	371	333	NO	
VST-03	593.21	20.37	571.21	371	306	366	NO	
VST-03	593.21	22.87	568.71	382	317	397	==YES==	
VST-03	593.21	25.37	566.21	393	339	426	==YES==	
	593.21	27.87	563.71	623	371	453	NO	
VST-03		30.37	561.21	535	328	478	NO	
VST-03	593.21	32.87	558.71	535	393	502	NO	
VST-03	593.21	35.37	556.21	655	404	524	NO	
VST-03	593.21		553.71	623	382	545	NO	
VST-03	593.21	37.87			459	565	NO	
VST-03	593.21	40.37	551.21	852	SCOTO-C	584	NO	
VST-03	593.21	42.87	548.71	928	601		NO	
VST-03	593.21	45.37	546.21	1267	633	602	NU	

3/6

							Page 1 of 2
Wang	BO	RING LO	G VS	Т-03	Datum: NAVD 8	8	
Engineering	1	NEI Job No.:	1100-04-	01	Elevation: 593.2		
wangeng@wangeng.com 1145 N Main Street	Client	AECO	M		North: 1899985 East: 1171693.3		
Lombard, IL 60148		Interchange			Station: 8415+5	3.90	
Telephone: 630 953-9928 Fax: 630 953-9938	Location Secti	on 17, T39N,	R14E of	3rd PM	Offset: 182.276	LT	
	8 . S		-		ype	Vo. ues	re (%)
	Depth (ff) Sample Type recovery Sample No. SPT Values (blw/6 in)	Qu (tsf) Moisture Content (%) Profile		OIL AND ROCH	Depth (ft) Sample Typ	Sample No. SPT Values (blw/6 in)	Qu (tsf) Moisture Content (%)
BOIL AND ROCK	SPT De	Pr Contro	Ele	DESCRIPTION	Sam		Cor
592.9ASPHALT		1111		$-S_{u \text{ undis}} = 425$.9 psf	<u>V</u> S	
PAVEN				S _{u remold} = 371 Sensitivity	= 1.1-		
Medium dense, brown grav coarse SAND	-				-		
-	-FILL		In-	Situ Vane Shear, 22. S _{u undis} = 371		2 <u>VS</u>	
	-			$-S_{u remold} = 305$	5.8 psf		
	5			Sensitivity	/=1.2		
		NP 6	ln_	-Situ Vane Shear, 24	5 feet-or	3	
	57			S	2.2 psf	° VS	
				Sensitivity	/= 1.2		
586.5	-				-		
Medium stiff, brown and g	ray –		In-	-Situ Vane Shear, 27	.0 feet	4 <u>vs</u>	-
SILTY CLAY LOAM				$-S_{u \text{ undis}} = 393$ $-S_{u \text{ remold}} = 333$	8.5 psf		
				Sensitivit	y = 1.2		
		0.75 26					
	102	- P	In	-Situ Vane Shear, 29 S _{u undis} = 62	2.5 psf	5 <u>VS</u>	-
	-			S _{u remold} = 37 Sensitivit	1.3 psf 1 v = 1.7		
			[Content	-		
	-		lr	n-Situ Vane Shear, 32	2.0 feet	6 <u>vs</u>	
580.2	-			$-S_{u \text{ undis}} = 53$ $-S_{u \text{ remold}} = 32$	27.6 psf		
Soft, gray SILTY CLAY			1	Sensitivi	ty = 1.6		
	- 3 3 2	NR			-	3	
	152		Ir	n-Situ Vane Shear, 3 S _{u undis} = 53	35.1 psf		È-
	-			S _{u remold} = 39 Sensitivi	93.1 psf		
				Sensitivi			
		0.25 23 P		n-Situ Vane Shear, 3	7.0 feet] 8	
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				$-S_{u \text{ undis}} = 63$ $-S_{u \text{ remold}} = 44$	55.2 psf		
				Sensitiv	rity = 1.6		
NG.G	-	1	1		-		
In-Situ Vane Shear, 1	9.5 feet-20 1			In-Situ Vane Shear, 3	39.5 feet ₄₀	9	
GE	NERAL NOTES			WAT	ER LEVEL		
Begin Drilling 12-02-2015 Complete Drilling 12-02-2015				While Drilling At Completion of Drilli	ほどう ひちょうさん	Rotary v able to n	
					ing ⊻ una NA		leasure
Driller R&N Log Drilling Method 2.25" HSA to backfilled upon compl	_{ger} F. Bozga o 10', mud rotary the			Time After Drilling Depth to Water	🗴 NA		IF/
Drilling Method 2.25" HSA to backfilled upon compl				The stratification lines r between soil types: the	represent the appro actual transition m	ay be gradua	al.
>							

Elevation C		Elevation D	Elevation E	
	588.52	589.84	581.13	
	590.62	589.91	581.00	
	588.96	590.16	580.54	
	588.91	590.41	580.08	
	588.90	590.66	579.63	
	588.75	590.91	579.17	
	588.98	591.04	578.94	
	589.24	591.16	579.37	
	589.03	591.34	579.99	
	589.28	591.41	580.48	
	590.04	591.66	582.12	
1	590.17	591.91	583.75	
1	590.88	592.17	585.41	
1	591.58	592.39	586.87	