STRUCTURE GEOTECHNICAL REPORT

F.A.P. Route 685 (IL 9) over North Fork LaMoine River

Existing S.N. 055-0015 Proposed S.N. 055-0097

F.A.P. ROUTE 685 SECTION (120-BR)1 MCDONOUGH COUNTY, ILLINOIS JOB NO. D-94-012-09 PTB 150/024 CONTRACT NO. 68215 KEG NO. 09-0006.03

Authored By: Matthew D. Masterson, P.E. & Charles R. Graham 208 East Main Street, Suite 100 Belleville, IL 62220 mmasterson@kaskaskiaeng.com (618) 233-5877

Prepared for: Allen Henderson and Associates, Inc. 907 South 4th Street Springfield, IL 62703

> August 6, 2013 Revised May 29, 2015 REVISED June 18, 2015 REVISED July 7, 2015

Kaskaskia Engineering Group, LLC

EXECUTIVE SUMMARY

F.A.P. Route 685 (IL 9) over North Fork LaMoine River Section (120-BR)1 McDonough County, Illinois Job No. D-94-012-09 PTB 150/024 Contract No. 68215 Proposed Structure No. 055-0097

The new structure is a three-span bridge located west of the intersection of Illinois Route 9 and East 1800th Street in McDonough County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

Slope stability is not anticipated to be an issue at the east or west abutment locations.

The proposed structure will widen the existing roadway approximately 1.5 ft. New approach embankments with fills less than 2 ft. are proposed. Since no significant grading or changes to the existing embankments are expected at the proposed structure, it is estimated that the existing embankments will experience settlements of less than 0.5 in. Therefore, settlement is not a concern for the proposed structure.

TABLE OF CONTENTS

1.0	Project Description and Proposed Structure Information1
1.1	Introduction1
1.2	Project Description1
1.3	Proposed Bridge Information 1
2.0	Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions 1
2.1	Subsurface Conditions2
2.2	Bedrock
2.3	Groundwater3
3.0	Geotechnical Evaluations
3.1	Settlement 3
3.2	Slope Stability
3.3	Seismic Considerations4
3.4	Scour 5
3.5	Mining Activity5
3.6	Liquefaction6
3.7	Approach Slab6
4.0	Foundation Evaluations and Design Recommendations
4.1	General Feasibility6
4.2	Pile Supported Foundations6
4.3	Lateral Pile Response
5.0	Construction Considerations9
5.1	Construction Activities9
5.2	Temporary Sheeting and Soil Retention9
5.3	Site and Soil Conditions10
5.4	Foundation Construction10
5.5	Cofferdam Construction10
6.0	Computations10
7.0	Geotechnical Data11
8.0	Limitations

TABLES

<u>Page</u>

Table 2.1 – Boring Stations and Offsets	2
Table 2.2 – Top of Rock Elevations	
Table 3.1 – Slope Stability Critical FOS	4
Table 3.2 – Summary of Seismic Parameters	5
Table 3.3 – Design Scour Elevations	5
Table 4.1 – Pile Types and Estimated Lengths for Abutments and Piers	7
Table 4.2 – Soil Parameters for Lateral Pile Load Analysis	8

EXHIBITS

Exhibit A –	USGS	Topographic	Location	Мар
-------------	------	-------------	----------	-----

- Exhibit B Type, Size, and Location Plan (TS&L)

- Exhibit C Boring Logs Exhibit C Boring Logs Exhibit D Subsurface Profile Exhibit E SLOPE/W Slope Stability Analysis Exhibit F Illinois State Geological Survey Mine Map Exhibit G Pile Length/Pile Type

1.0 **Project Description and Proposed Structure Information**

1.1 Introduction

The geotechnical study summarized in this report was performed for the proposed structure at IL Route 9 over North Fork LaMoine River in McDonough County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

1.2 **Project Description**

The project consists of installation of a new three-span bridge (SN 055-0097) located at IL Route 9 over North Fork LaMoine River. The project is located approximately 450 ft. west of the intersection of IL Route 9 and East 1800th Street. The general location of the structure is shown on a USGS Topographic Location Map, Exhibit A. The site lies within the limits of the Fourth Principal Meridian (T. 7N R. 2W Section 36) within the Galesburg Plain of the Till Plains section of the Central Lowland Province.

1.3 Proposed Bridge Information

The proposed structure (SN 055-0097) located at Illinois Route 9 over North Fork LaMoine River will consist of one, three-span structure built on a 15 degree skew from the centerline. The structure will have a width of 35 ft. -2 in. out to out. The centerline of the structure will lie at Sta. 312+59.00 (IL Route 9). Integral abutments are proposed for the substructure.

The structure will measure 235 ft., measured along the centerline of IL Route 9, from back to back of abutments, and will support two, 12-ft. lanes with 4-ft. outside shoulders. Further substructure details will be based on the findings of this SGR.

1.4 Existing Bridge Information

The existing structure (SN 055-0015) was built in 1960 as a three-span continuous steel multibeam/girder structure with a length of 154 ft. back-to-back abutments and with a 33 ft. - 8 in. outto-out width.

2.0 Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions

The site investigation plan was developed by the Illinois Department of Transportation (IDOT). A KEG representative did not observe any part of the field exploration, or make site observations, including review of the soil samples retained during drilling. Due to a lack of field testing for compressive strength values of the retained samples, KEG estimated the unconfined compressive strengths of the cohesive samples based off of empirical data and engineering judgement.

Four standard penetration test (SPT) borings, designated B-1 through B-4, were drilled on June 10 through June 14, 2013. One rock core was performed at B-3 on June 12, 2013. The stations and offsets of the borings are listed in Table 2.1. The boring locations are shown on the Type, Size, and Location Plan (TS&L), Exhibit B, as provided by Allen Henderson and Associates, Inc.

Detailed information regarding the nature and thickness of the soils encountered and the results of the field sampling and laboratory testing are shown on the Boring Logs, Exhibit C. A soil profile can be found under Subsurface Profile, Exhibit D.

Designation	Stationing	Offset from Proposed Centerline	Surface Elevation (ft.)
B-1	313+11.5	37.0 ft. Right	622.5
B-2	313+76.5	45.0 ft. Right	623.0
B-3	312+6.5	42.5 ft. Right	623.4
B-4	311+41.5	41.0 ft. Right	623.0

Table 2.1 – Boring Stations and Offsets

2.1 Subsurface Conditions

The stratigraphy of the borings exhibited layers of clayey/sandy loam, silty clays, clays, silts, coarse sands, gravel, cobbles, and boulders. In general, the lithologic succession beneath the ground surface is as follows:

a) Fill (Clay/Sandy Clay/Sandy Loam) -All of the borings encountered fill material ranging from approximately 8 to 13 ft. The driving resistance (N-values) ranged from 2 to 10 blows per foot (bpf). The moisture content of the fill varied from 14 to 42 percent. b) Clay/Loam/Sand -Below the fill material, layers of clay, loam, and sand were encountered ranging from 10 to 34 ft. thick. The N-values ranged from 1 to 16 bpf, with unconfined compressive strengths (Q_u) values from less than 0.50 to 3.5 tons per square foot (tsf). The moisture content varied from 13 to 37 percent. c) Sand -From approximate El. 600 to 575 of each boring, sand was encountered. The sand layer in B-2 extended to approximately El. 565. The N-values ranged from 12 to 61 bpf, with moisture contents of 10 to 23 percent. d) Clay/Sandy Clay/ Silty Clay -From approximate El. 570 to 550 of each boring, a layer of clay, sandy clay, and silty clay were encountered. A sandy clay layer extended to El. 545 in B-4. The N-values ranged from 9 to 38 bpf, with Q_u values from 1.1 to 4.5 tsf. The moisture content ranged from 14 to 46 percent. A layer of sand was encountered from approximate EI. 550 to 544 in Be) Sand -1, B-2, and B-3. The N-values ranged from 22 to 46 bpf, with moisture

contents of 7 to 18 percent.

f) Weathered

Interbedded Dolomite

Shale -

From approximate EI. 544 to termination/auger refusal of the borings, gray weathered shale, or shale with interbedded dolomite was encountered. B-3 was extended to approximate EI. 536 with rock coring methods. The N-values ranged from 50 blows per 5 in. to 50 blows per 0 in., with moisture contents of 13 to 16 percent. The rock core was identified as weathered interbedded dolomite and shale and had a recovery of 33 percent and Rock Quality Designation (RQD) equal to zero.

2.2 Bedrock

Table 2.2 shows the elevation of auger refusal on apparent bedrock for Boring B-2 and the top elevation of the shale/shale with interbedded dolomite in the borings. Auger refusal is a designation applied to any material that cannot be further penetrated by the power auger without extraordinary effort and is indicative of a very hard or very dense material, usually bedrock.

Boring	Auger Refusal Elevation (ft.)	Top of Rock Elevation (ft.)
B-1	N/A	544.02
B-2	543.50	544.50
B-3	N/A	543.90
B-4	N/A	545.00

Table 2.2 – Top of Rock Elevations

2.3 Groundwater

Groundwater was encountered during drilling in Boring B-1 at El. 611.5, B-2 at El. 611.5, B-3 at El. 612.4, and B-4 at El. 607.0. It should be noted that the groundwater level is subject to seasonal and climatic variations. In addition, without extended periods of observation, measurement of true groundwater levels may not be possible.

3.0 Geotechnical Evaluations

3.1 Settlement

Since no significant grading or changes to the existing embankments are expected at the proposed structure, it is estimated that the existing embankments will experience settlements of less than 0.5 in. Therefore, no settlement calculations were performed for the proposed structure.

3.2 Slope Stability

The proposed construction of the IL Route 9 Bridge results in new endslopes at the abutment locations.

The proposed abutments are integral abutments with endslopes at 1 Vertical to 2 Horizontal (1V:2H), to the toe in the streambed. Slope stability of the endslopes was analyzed using SLOPE/W; the soil properties at the site, including Borings B-2 and B-4; and endslope geometrics.

KEG modeled the slopes at both abutment locations and the slopes at both river bank locations. Three conditions were modeled for each: end-of-construction, long-term, and a design seismic event. A critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

In order to model the end-of-construction condition, full cohesion was used with a friction angle of 0 degrees assumed for cohesive soils. Nominal values for cohesion were used with full friction angle to model the long-term and seismic conditions to analyze the theoretical condition where pore water pressure has dissipated. For new fill and clay and silty clay materials, a nominal cohesion of 50 psf was utilized. Friction angles ranged from 26 to 38 degrees.

The Bishop Circular Method, which generates circular-shaped failure surfaces, was used to calculate the critical failure surfaces and FOS for the proposed conditions. The FOS obtained in the analysis are shown in Table 3.1. SLOPE/W program output from this analysis can be found in SLOPE/W Slope Stability Analysis, Exhibit E.

		Calculated Critical FOS					
Location	Slope	End-of- Construction	Long- Term	Seismic			
East Abut – Upper Slope	1V:2H	3.1	2.0	1.7			
East Abut – Lower Slope	1V:2H	3.0	1.9	1.7			
West Abut – Upper Slope	1V:2H	3.0	2.0	2.0			
West Abut – Lower Slope	1V:2H	4.5	1.7	1.6			

Table 3.1 – Slope Stability Critical FOS

All factors of safety obtained in the analysis meet the required values.

3.3 Seismic Considerations

The determination of Seismic Site Class was based on the method described by IDOT AGMU Memo 09.1 - Seismic Site Class Definition and the IDOT-provided spreadsheet titled: Seismic Site Class Determination. Using these resources, the controlling global site class for this project is Soil Site Class D.

Additional seismic parameters were calculated for use in design of the structure and evaluation of liquefaction potential. The USGS published information and mapping (<u>http://earthquake.usgs.gov/</u>), including software directly applicable to the AASHTO Guide Specifications for LRFD Seismic Bridge Design, was used to develop the parameters for the project site location. The values, based on a 1000-Year Return Period with a Probability of Exceedance (PE) of 7 percent in 75 years and the Soil Site Class D, are summarized below.

Table 3.2 – Summary of Seismic Parameters

Parameter	Value
Soil Site Class	D
Spectral Response Acceleration, 0.2 Sec, S _{DS}	0.166g(Site Class D)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.110g (Site Class D)
Seismic Performance Zone	1

As indicated in the table above, the Seismic Performance Zone is 1, based on S_{D1} and Table 3.15.2 in the IDOT Bridge Manual, the Soil Site Class D, and Figure 2.3.10-3 in the IDOT Bridge Manual.

3.4 Scour

The design scour elevations for the proposed bridge are shown in Table 3.3. They have been reviewed in accordance with All Bridge Designers (ABD) Memorandum 14.2. Class A5 stone riprap will be placed on the surface of the proposed east and west end-slopes from top to toe, as well as the intermediate piers, to reduce the potential for future scour.

Design Scour Elevations (ft.)										
	West Abutment	Pier #1	Pier #2	East Abutment	ltem 113					
Q100	625.82	604.45	599.50	626.16						
Q500	625.82	601.95	594.50	626.16						
Design	625.82	604.45	599.50	626.16	5					
Check	625.82	601.95	594.50	626.16						

Table 3.3 – Design Scour Elevations

3.5 Mining Activity

According to the Illinois State Geological Survey (ISGS) website, coal mining has occurred in McDonough County. According to the McDonough County, Illinois Coal Mines and Underground Industrial Mines Map, dated August 6, 2012, obtained from the ISGS website (<u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps.shtml</u>), the project site was not undermined. Refer to the ISGS Mine Map, Exhibit F, for additional information.

3.6 Liquefaction

A liquefaction analysis is not required to be performed since the project is in a Seismic Performance Zone 1 as per IDOT Bridge Manual and AGMU Memo 10.1 - Liquefaction Analysis.

Liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations included herein.

3.7 Approach Slab

In accordance with the IDOT Bridge Manual, KEG evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. With proper compaction of the new approach embankment fill, the bearing capacity and settlement requirements of the IDOT Bridge Manual should be satisfied. Backfill placed directly behind the abutments should be in accordance with Guide Bridge Special Provision #76.

4.0 Foundation Evaluations and Design Recommendations

4.1 General Feasibility

According to IDOT ABD Memo 12.3, dated July 25, 2012; HP 10X42 or larger H-piles are feasible pile types for foundation support of the proposed integral abutment. Due to the calculated effective expansion length (EEL) for the controlling east abutment of 141.11 ft. and the proposed 15 degree skew from the centerline, the IDOT Integral Abutment Feasibility Analysis Spreadsheet, July 7, 2014, indicates that metal shell piles are not a feasible option for the proposed structure. As an alternative, the use of Semi-integral abutments would allow for the use of metal shell piles for the foundation support of the proposed structure abutments.

4.2 Pile Supported Foundations

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loadings. The Modified IDOT Static Method uses the LRFD Pile Design Guide Procedure to estimate the pile lengths.

The Strength 1 factored loads were 900 kips at the abutments and 1900 kips at the piers. The loads were provided by Allen Henderson and Associates, Inc. The estimated pile lengths for the pile types considered are shown in Exhibit G - Pile Length/Pile Type. The Nominal Required Bearing (R_N) represents the resistance the pile will encounter during driving. These values will assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long-term axial factored pile capacity available at the top of the pile to support the factored substructure loadings.

Based on the pile cutoff elevations for the abutments shown in the TS&L provided by Allen Henderson and Associates, Inc. The estimated pile lengths for several pile types considered are summarized below in Table 4.1 – Pile Types and Estimated Lengths for Abutments and Piers. The input and output pile design spreadsheets are also included in Exhibit G – Pile Length/Pile Type, for additional information.

As shown in Exhibit G – Pile Length/Pile Type, downdrag, liquefaction, and scour have not been considered at the abutment locations. Scour was considered for the intermediate pier substructures. The following values are for H-piles driven into the underlying rock.

Structure Unit	Pile Size	Maximum Nominal Required Bearing R _N (kips)	Maximum Factored Resistance Available R _F (kips)	Estimated Pile Length (feet)	Estimate Pile Cut- off Elevation (feet)	Estimated Pile Tip Elevation (feet)
	HP 10X42	335	184	85	627.82	542.82
	HP 12X53	418	230	85	627.82	542.82
West	HP 12x74	589	324	88	627.82	539.82
Abutment	HP 14x73	578	318	86	627.82	541.82
	HP 14x89	705	388	88	627.82	539.82
	HP 14x117	929	511	92	627.82	535.82
	HP 10X42	335	174	86	627.8	541.82
	HP 12X53	418	217	86	627.8	541.82
Pier 1	HP 12x74	589	311	90	627.8	537.82
	HP 14x73	578	303	87	627.8	540.82
	HP 14x89	705	373	89	627.8	538.82
	HP 14x117	929	495	93	627.8	534.82
	HP 10X42	335	174	86	627.8	541.82
	HP 12X53	418	218	86	627.8	541.82
Pier 2	HP 12x74	589	312	89	627.8	538.82
	HP 14x73	578	304	87	627.8	540.82
	HP 14x89	705	374	89	627.8	538.82
	HP 14x117	929	496	92	627.8	535.82

Table 4.1 – H-Pile Types and Estimated Lengths for Abutments and Piers

	HP 10X42	335	184	86	628.16	542.16
	HP 12X53	418	230	86	628.16	542.16
East Abutment	HP 12x74	589	324	89	628.16	539.16
Abutment	HP 14x73	578	318	87	628.16	541.16
	HP 14x89	705	388	89	628.16	539.16
	HP 14x117	929	511	92	628.16	536.16

Since the H-piles are assumed to be end-bearing in rock, KEG recommends a test pile be installed at one of the abutment locations. A test pile is installed prior to production driving so that actual on-site field data can be gathered to further evaluate pile driving requirements for the project. This also is the manner in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

4.3 Lateral Pile Response

Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an L-Pile program or other approved software can be used for the lateral or displacement analysis of the foundations. Table 4.2 is included for the structural engineer's use in evaluating lateral pile response. The values were estimated based on the descriptions as listed on the boring logs. No specific hydrometer analyses were performed on the site soils.

Boring	Elev. at Bottom of	γ (pcf)	Short Term		Long Term		N	Assumed % fines	K	ε50
	Layer		Φ (deg.)	c (psf)	Φ (deg.)	c (psf)		< #200	(pci)	
	616.5	120	0	600	27	50	5	35	100	0.010
	616.5	115	0	250	32	50	2	60	30	0.020
	606.0	110	32	N/A	32	N/A	2	10	20	N/A
	604.0	115	0	500	30	50	1	60	30	0.020
	602.5	125	0	500	26	50	2	75	30	0.020
	596.5	115	0	1350	32	50	9	35	500	0.007
B-1	584.0	110	34	N/A	34	N/A	22	10	60	N/A
	581.5	115	0	3300	30	100	26	75	1000	0.005
	573.5	110	36	N/A	36	N/A	61	10	125	N/A
	569.0	120	0	4500	27	100	41	40	2000	0.005
	549.0	125	0	2000	26	100	21	75	500	0.007
	544.0	110	34	N/A	34	N/A	46	10	125	N/A
	541.5	125	0	3500	12	100	100	N/A	500	0.007
	616.0	125	0	900	26	50	7	75	100	0.010
	613.0	115	0	250	32	50	2	60	30	0.020
	609.5	120	0	750	30	50	6	35	100	0.010
B-2	604.0	110	32	N/A	32	N/A	2	10	20	N/A
D-2	598.5	120	0	500	27	50	5	40	100	0.010
	594.0	125	0	1250	26	50	14	75	500	0.007
	589.5	110	34	N/A	34	N/A	12	10	60	N/A
	584.5	115	0	3250	32	100	26	35	1000	0.005

Table 4.2 – Soil Parameters for Lateral Pile Load Analysis

Boring	Elev. at Bottom of	γ (pcf)	Short	Term	Long Term		N	Assumed % fines	K	ε50
	Layer		Φ (deg.)	c (psf)	Ф (deg.)	c (psf)		< #200	(pci)	
	579.5	115	0	3900	28	100	31	95	1000	0.005
	564.5	110	36	N/A	36	N/A	34	10	125	N/A
	549.5	125	0	1430	26	100	19	75	500	0.007
	544.5	110	34	N/A	34	N/A	32	10	60	N/A
	543.5	125	0	2000	12	250	100	N/A	1000	0.005
	617.4	125	0	875	26	50	7	85	100	0.010
	615.4	120	0	250	27	50	2	80	30	0.020
	612.4	120	0	250	27	50	2	40	30	0.020
	608.9	110	32	N/A	32	N/A	2	10	20	N/A
	599.9	125	0	1762	26	100	13	75	500	0.007
B-3	597.4	120	0	3000	27	100	31	40	1000	0.005
D-3	574.9	110	34	N/A	34	N/A	28	10	60	N/A
	559.9	125	0	3530	26	100	33	75	1000	0.005
	554.4	120	0	1500	26	100	22	95	500	0.007
	550.4	125	0	2100	26	100	27	75	1000	0.005
	543.9	110	34	N/A	34	N/A	37	10	125	N/A
	530.9	125	0	3500	12	100	100	N/A	1000	0.005
	619.5	125	0	1000	26	50	8	85	100	0.007
	616.0	120	0	800	27	50	6	80	100	0.010
	610.0	125	0	500	26	50	4	70	30	0.020
	606.5	115	0	500	30	50	2	55	30	0.020
	602.0	125	0	3150	26	100	13	75	1000	0.005
	600.0	115	0	5500	28	100	44	95	2000	0.004
B-4	579.0	110	34	N/A	34	N/A	28	10	60	N/A
D-4	575.0	125	0	3500	26	100	43	60	1000	0.005
	570.0	120	0	4000	27	100	42	80	2000	0.005
	560.0	125	0	1100	26	50	17	85	500	0.007
	554.0	120	0	1500	26	100	15	80	500	0.007
	550.0	125	0	1400	26	50	22	85	500	0.007
	545.0	120	0	1500	27	100	21	60	500	0.007
	539.5	135	0	3500	12	100	100	N/A	1000	0.005

5.0 Construction Considerations

5.1 Construction Activities

Construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction and any pertinent Special Provisions or Policies.

5.2 Temporary Sheeting and Soil Retention

Temporary sheeting is required at the existing east and west abutments during construction, as staged construction is anticipated for this project.

At the east abutment, for a retained soil height of 15 ft., with an average N-value of 5 bpf, the required embedment depth is 28.0 ft. For a retained soil height of 17 ft., with an average N-value of 6 bpf, the required embedment depth is 30.0 ft. If the retained height exceeds 17 ft. at the east abutment location, the IDOT Temporary Sheet Piling Design Guide and Charts indicate that a Cantilevered Sheet Piling System would no longer be feasible.

At the west abutment, for a retained soil height of 15 ft., with the N-values and Q_u values of the boring logs, the required embedment depth is 23.5 ft. For a retained soil height of 18 ft., with an average N-value of 11 bpf, the required embedment depth is 26.0 ft. If the retained height exceeds 18 ft. at the west abutment location, the IDOT Temporary Sheet Piling Design Guide and Charts indicate that a Cantilevered Sheet Piling System would no longer be feasible.

While the IDOT method shows that a maximum retained height of 17 ft. and 18 ft. for the east and west abutments, respectively, is feasible, KEG typically recommends a minimum of 2 ft. embedment per 1 ft. retained height. In KEG's opinion, sheeting can be installed with standard vibratory methods to approximate El. 595 ft. at the East Abutment and El. 602 ft. at the West Abutment; below these elevations, the sheeting may require a driven installation method. If the required embedment depths extend below these elevations and the contractor determines that a driven method is not feasible, a soil retention system will be required. An Illinois-licensed structural engineer is required to seal the design of the temporary soil retention system, if deemed necessary.

5.3 Site and Soil Conditions

Should any bridge or embankment design considerations assumed by either IDOT or KEG change, KEG should be contacted to determine if the recommendations stated in this report still apply.

See Section 205 – Embankment, of the Standard Specifications of Road and Bridge Construction for specific information on embankment construction.

5.4 Foundation Construction

Conventional pile driving equipment and methodologies should be assumed. Protective tips should be provided for the piles.

A JULIE locate shall be conducted to determine if any underground utilities are present in the area of the proposed structure prior to construction. If utilities become a problem during construction, the appropriate owner shall be contacted immediately.

5.5 Cofferdam Construction

Cofferdams will be required at the proposed pier locations. The estimated water surface elevation is greater than 6 ft. above the bottom elevation of the substructure. Therefore, a Type 2 cofferdam will be required. All cofferdams are required to be dewatered. Sand and loam materials are present at the site of the cofferdams requiring the use of a seal coat. A seal coat will reduce the potential for water from seeping beneath the sheet piling in the dewatered cofferdam. As per the 2012 IDOT Bridge Manual, if a seal coat is specified, General Note 26 shall be added to the plans.

6.0 Computations

Computations and analyses for special circumstances, if any, are included as exhibits. Please refer to each section of the report for reference to the exhibit containing any such calculations or analysis used.

7.0 Geotechnical Data

Soil borings can be found in Exhibit C. The Subsurface Profile can be found in Exhibit D.

8.0 Limitations

The recommendations provided herein are for the exclusive use of Allen Henderson and Associates, Inc. and IDOT. They are specific only to the project described and are based on the subsurface information obtained at four boring locations within the bridge area in 2013, KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

EXHIBIT A

USGS TOPOGRAPHIC LOCATION MAP

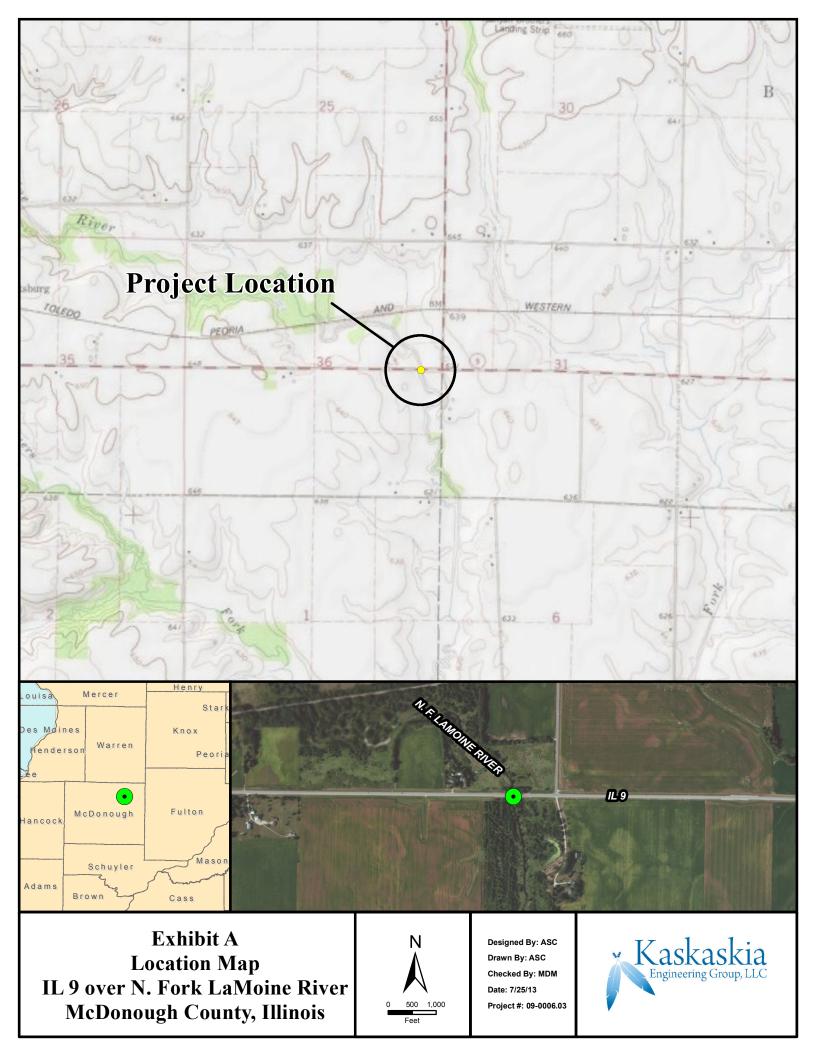
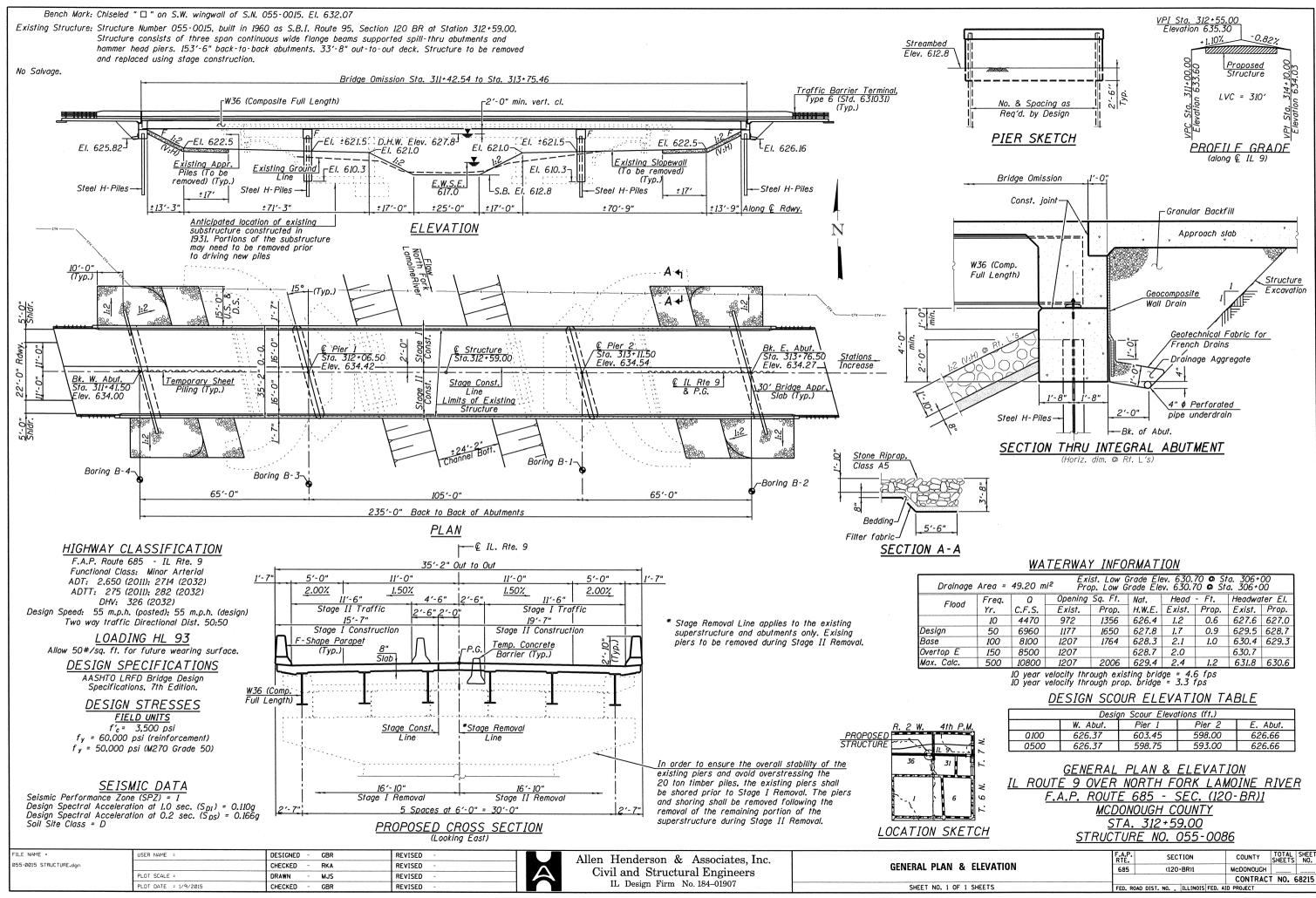



EXHIBIT B

TYPE, SIZE, AND LOCATION PLAN (TS&L)

Area =	Area = 49.20 mi ² Exist. Low Grade Elev. 630.70 • Sta. 306+00 Prop. Low Grade Elev. 630.70 • Sta. 306+00													
Freq.	0	Opening	Sq. Ft.	Nat.	Head	- Ft.	Headwa	ter El.						
Yr. C.F.S. Exist. Prop. H.W.E. Exist. Prop. Exist. Prop.														
10 4470 972 1356 626.4 1.2 0.6 627.6 627.0														
10 1410 312 1330 626.4 1.2 0.6 627.6 627.0 50 6960 1177 1650 627.8 1.7 0.9 629.5 628.7														
100	8100	1207	1764	628.3	2.1	1.0	630.4	629.3						
150	8500	1207		628.7	2.0		630.7							
500														
	10 year velocity through existing bridge = 4.6 fps													

	<u>D</u> E	ESIGN SCO	DUR ELEV	ATION TA	A <u>BLE</u>		
		Desig	gn Scour Eleva	tions (ft.)			
		W. Abut.	Pier 1	Pier 2	<i>E.</i> A	but.	
1	0100	626.37	603.45	598.00	626.	66	
7 7.	0500	626.37	598.75	593.00	626.	66	
. 9 . ℃H		<u>E 9 OVER</u> A.P. ROUT <u>MCD</u> <u>STRUCT</u>	PLAN & NORTH F E 685 - S ONOUGH C TA. 312+5 TURE NO.	<u>ORK LAM</u> SEC. (120 <u>OUNTY</u> <u>9.00</u> 055-008	<u>10INE F</u> <u>0-BR)1</u> 6	TOTAL	
ELEVATIO	ΩN	F	RTE. SEC	TION	COUNTY	SHEETS	2
		-	685 (120)-BR)1			58
				1	CONTRACT	I N(), E	۰ ×

EXHIBIT C

BORING LOGS

Page <u>1</u> of <u>3</u>

Illinois Department of Transportation

Division of Highways Terracon

SOIL BORING LOG

Date 6/10/13

ROUTE	IL Route 9	DE					East Pier Boring				LOGGED BY		
OFOTION				00 A T		050							
SECTION _	120-BR-1		L	LOCAI		<u>, SEC.</u> Latitu	, TWP., RNG., de, Longitude						
COUNTY	McDonough DF	RILLING	MET	HOD			HSA	HAMMER -	TYPE		AL	ЛО	
						1				1			
STRUCT, NO	0 . 055+0086		D	В	U	м	Surface Water Elev.		ft	D	в	U	М
Station	312+59		Е	L	С	0	Stream Bed Elev.		ft	E	L	С	0
			P	0	S				-	P	0	S	Ι
BORING NO	1 <u>313+11.5</u>		T H	W S	<u> </u>	S T	Groundwater Elev.:			T H	W S	<u> </u>	S T
Station _	313+11.5 37.0 ft RT		п	3	Qu	'	First Encounter			п	э	Qu	•
	rface Elev622.52	ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion After Hrs.		_ n ft	(ft)	(/6")	(tsf)	(%)
				()	()	()			_ 11	(7	(-)	V 1	()
	oproximately 6"	622.02					SANDY LOAM, gray	, mealum sun					
organics, br	<u>Y CLAY</u> , trace			1							2		
organics, br	own			2		19					3	0.8	19
				3							7	Р	
				2							5		
				3		29					7		18
			-5	2						-25	8		
		616.52							596.52		~		
FILL: SAND	<u>Y LOAM</u> , trace			1		19	<u>SAND</u>, gray, mediun dense	n dense to			3 5		6
organics, bi	Own			1		19	dense				9		0
				•							•		
		614.02											
SAND. grav.	very loose, (possible			1							12		
fill)	,, (i			1		19					14		17
			-10	2						-30	18		
		_	<u> </u>										
				0		14							
				1		14							
				•									
											5		
				1/12"		21					9		20
			-15	1						-35	10		
		606.02		0									
SILTY LOAN	<u>I</u> , gray, very soft			0	<0.5	31							
				1	Р								
		001.05							F0 4 6 6				
		604.02						iom i otiff	584.02		6		
CLAY, gray,	SOIL			1/12"	<0.5	32	SILTY LOAM, gray, v	very sum			11		18
		602.52	-20	2	P					-40	15		10
		002.52	-20	-			11			-40			

Page 2 of 3

Illinois Department of Transportation

SOIL BORING LOG

Date 6/10/13

ROUTE	IL Route 9	DE				East Pier Boring				LOGGED BY			١F
SECTION	120-BR-1		L		ION	. SEC.	, TWP. , RNG. ,						
						Latitu	de , Longitude						
COUNTY	McDonough D		MFT	пор			HSA	HAMMER T	YPF		Αl	ЛО	
	055,0000			в	U	м				D	в	U	м
STRUCT. NO.	055+0086						Surface Water Elev.		, ft			C	
Station	312+59		E P	L	C S	0	Stream Bed Elev.		ft	E P	L	S	0
				0	э					Р Т	0	Э	I
BORING NO.	1 313+11.5 37.0 ft RT		T	W	.	S	Groundwater Elev.:			-	W	0	S
Station	313+11.5		н	S	Qu	Т	First Encounter	611.5	ft⊻	н	S	Qu	Т
Offset	37.0 ft RT		(64)		(4-5)	(0/)	Upon Completion		ft	(64)	((0))	(4~F)	(0/)
Ground Surfa	ace Elev. 622.52	ft	(ft)	(/6")	(tsf)	(%)	After Hrs		ft	(ft)	(/6")	(tsf)	(%)
SILTY LOAM,	gray, very stiff						CLAY, gray, stiff to very	stiff					
		581.52					(continued)						
SAND, grav, ve	ery dense												
, 5 = , , , ,	,												
				40							5		
				46		11					7	1.9	20
			-45	4 -						-65	_	S	
			-40							-05	-	0	
											-		
		573.52		9	4.5	44					7	4.0	47
SANDY CLAY,	greenish-brown,			18 23	4.5	14					10	1.3	17
very stiff to har	a		-50	23	Р					-70	17	S	
		569.02							549.02				
CLAY, gray, st	iff to very stiff			9			SAND, gray, dense				7		18
	-			12	1.8	30					19		
			-55	13	s	/				-75	27		
				1									
				1									
				1									
				1					544.02				
				4	3.0	27	WEATHERED INTERBE				50/1"/		14 /
				7	P	ſ′	DOLOMITE & SHALE, g	ray					
			-60	8	<u> </u>		, g			-80			
L			00			1	1			55			

Illinois Department of Transportation

SOIL BORING LOG

Date 6/10/13

Page $\underline{3}$ of $\underline{3}$

ROUTE	IL Route 9	DES	SCRI	PTION			East Pier Boring		LOGG	ED BY	AF
SECTION	120-BR-1		_ L	_OCAT	ION _	, SEC.	, TWP. , RNG. ,				
							de, Longitude				
COUNTY	McDonough D	RILLING	MET	HOD			HSA	HAMMER T	YPE	AUTC)
		1									
STRUCT NO	055+0086		D	в	U	м	Surface Water Elev.		ft		
Station	312+59		Е	L	C	0	Stream Bed Elev.		ff		
	012:00		P	ō	S	Ĩ	Stream Bed Elev.		IL		
	4		T	w		s					
BORING NO.	1 313+11.5 37.0 ft RT		H	S	<u> </u>	T	Groundwater Elev.:				
Station	313+11.5		п	3	Qu	•	First Encounter				
Offset	37.0 ft RT			((0))	11.0	(0/)	Upon Completion		ft		
Ground Surf	ace Elev. 622.52	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.		ft		
WEATHERED	INTERBEDDED										
	SHALE, gray	541.52									
(continued)	<u></u> , g,	J41.JZ		50/0"		16					
End of Boring				50/0		10					
				1							
			-85								
			_								
			-90								
			00								
			-95								
				1							
1			-100								

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Terracon Page 1 of 3

Date 6/11/13

ROUTE	IL Route 9	DES					East Abutment Boring	LOGGED BY			A	١F
SECTION	120-BR-1		_ L		ION _	, SEC.	, TWP. , RNG. ,					
						Latitu	de , Longitude					
COUNTY	McDonough DI	RILLING	MET	HOD			HSA HAMMER	TYPE		AL	JTO	
STRUCT. NO	055+0086		D	В	U	M	Surface Water Elev.	ft	D	В	U	M
Station	312+59		Е	L	С	0	Stream Bed Elev.	ft	E	L	С	0
			Ρ	0	S				P	0	S	
BORING NO.	2 313+76.5 45.0 ft RT		Т	W		S	Groundwater Elev.:		T	W		S
Station	313+76.5		н	S	Qu	Т	First Encounter611.5	ft▼	H	S	Qu	Т
Offset	45.0 ft RT						Upon Completion	ft				
Ground Sur	face Elev. 623.00	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/6'')	(tsf)	(%)
TOPSOIL, ap	proximately 10"						SANDY CLAY, gray, soft to					
		622.10					medium stiff (continued)					
FILL: CLAY , t	prown, trace organics			3						1		
				4		23				2	<.5	27
				6						5/	P/	
				2						3		
				2		34		598.50		5	1.2	24
			-5	2			CLAY, gray, stiff	000.00	-25	9	S	
			-5	·/			<u>CLAI</u> , gray, sui		-23			1
				1						5		
				1		22				6	1.3	14
		616.00		1		22				8		<u> </u>
FILL: SANDY	LOAM , gray			1							S	
				1				594.00		3		
				1		24	SAND, gray, medium dense			5		17
		613.00	-10	1					-30	7		
SANDY CLAY	<u>′ LOAM</u> , gray,											
medium stiff												
				2								
		_	_	3		19						
				3								
		609.50						589.50				
SAND, gray, v	very loose		·	2			SANDY LOAM, gray, medium			7		
, 5 = ,, *				1		18	dense			12		19
Clay seam at	14.5 feet		-15	1					-35	14		
,												
				2								
				1		14						
				1								
				· ·								
								E01 E0				
		004.00		2				584.50		11		
	(604.00		2 1	<.5	24	<u>SILT</u> , gray, dense			15		20
SANDY CLAY	<u>/</u> , gray, soft to					24				15		20
medium stiff			-20	1	P				-40			

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Terracon Page <u>2</u> of <u>3</u>

Date ______6/11/13___

ROUTE	IL Route 9	DES					East Abutment Boring	g	LOGGED BY			A	١F
SECTION	120-BR-1		_ L	OCAT	ION _	, SEC.	, TWP. , RNG. ,						
	McDonough D	RILLING	MET	HOD		Latitu	de , Longitude HSA	HAMMER 1	YPE		AL	JTO	
Station	055+0086 312+59		D E P T	B L O W	U C S	M O I S	Surface Water Elev		ft ft	D E P T	B L O W	U C S	M O I S
Station Offset	2 313+76.5 45.0 ft RT		н	S	Qu	т	Upon Completion	611.5	ft	н	S	Qu	т
r	ace Elev. <u>623.00</u>) ft	(ft)	(/6")	(tsf)	(%)	After Hrs		ft	(ft)	(/6")	(tsf)	(%)
SAND, gray, m	nse (continued) edium dense to	579.50		4			CLAY, gray, stiff to very (continued)	stiff			3		
very dense			-45	5 9		17				-65	4 5	1.1 S	31
				7		19					9	1.9	19
			-50	15						-70		S	
				27			<u>SAND</u> , gray, medium de	ense	549.50		8		
				29 \31		10				75	12 20		14
		564.50	55 						544.50	75 			
CLAY, gray, st	iff to very stiff			8 11	1.3	32	FRACTURED BEDROCI	K	E42 50				
			-60	17	1.3 S	32	Auger Refusal at 79.5 f	eet	543.50	-80			

Illinois Department of Transportation

SOIL BORING LOG

Date 6/11/13

Page $\underline{3}$ of $\underline{3}$

ROUTE	IL Rou	te 9					East Abutment Boring			LOGGE	ED BY	AF
SECTION	12	20-BR-1		_ L	.OCAT	ION _	, SEC.	, TWP. , RNG. ,				
								de , Longitude		~		`
COUNTY	NicDonou	gn DRI	LLING	MEI	HOD			HSA	_ HAMMER IN	(PE	AUTC	,
STRUCT. NO.	055	5+0086		D	в	U	м	Surface Water Elev.		ft		
Station	31	12+59		Е	L	С	0	Stream Bed Elev.		ft		
				P T	O W	S	I S					
BORING NO. Station	313	2 3+76 5		н	S	Qu	T	Groundwater Elev.: First Encounter	611 5	ff V		
Offset	45.0	0 ft RT	_					Upon Completion	011.0	ft		
Ground Surfa	ace Elev.	623.00	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.		ft		
End of Boring			I									
			-									
			-									
				-85								
				-85								
			-									
			-									
			-									
			-									
			-	-90								
			-									
				-95								
			-									
			-									
			-									
				_								
				-100								

Page <u>1</u> of <u>3</u>

Illinois Department of Transportation

SOIL BORING LOG

Date 6/12/13

ROUTE	IL Route 9	DES					West Pier Boring	LOGGED BY			A	١F
SECTION	120-BR-1		_ L	OCAT	ION _	, SEC.	, TWP. , RNG. ,					
COUNTY	McDonough D	RILLING	MET	HOD		Latitu		TYPE		AL	ЛО	
Station	. <u>055+0086</u> <u>312+59</u>		D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev Groundwater Elev.:		D E P T	B L O W	U C S	M O I S
Station	3 312+6.5 42.5 ft RT		H	S	Qu	Т	First Encounter 612.4 Upon Completion	ft	Ĥ	S	Qu (tof)	т
	face Elev. 623.40 proximately 6"		(ft)	(/6")	(tsf)	(%)	After Hrs CLAY, gray, stiff to very stiff	_ ft	(ft)	(/6")	(tsf)	(%)
	race organics, brown	022.90		3		25	(continued)			6	2.2	14
				3						10	2.2 B	14
				3		10	SANDY CLAY, gray, very stiff	599.90		10	0.0	47
			-5	4		16			-25	11 20	3.0 P	17
FILL: SANDY	CLAY, trace	617.40		1			SAND, gray, medium dense to	597.40		9		
organics, bro		615.40		1		20	dense			11 15		20
SANDY CLAY	<u>(</u> , gray, soft	013.40		0						7		
			-10	1		22			-30	10 17		23
SAND , gray, v	very loose to loose	612.40	<u> </u>	1		26						
				2		20				7		
<u>CLAY</u> , gray, s	stiff to very stiff	608.90	-15	3 \3		25			-35	10 12		19
				5 6 8	2.2 B	14				F		
			-20	6 7 8		16			-40	5 3 14		18

Page 2 of 3

Illinois Department of Transportation

SOIL BORING LOG

Date <u>6/12/13</u>

ROUTE	IL Route 9	DES				West Pier Boring			LOGGED BY			١F
SECTION	120-BR-1		_ L	.OCAT	ION _	, SEC.	, TWP. , RNG. ,					
	MaDanawah D					Latitu					ЛО	
COUNTY	McDonough DF	RILLING		HOD			HSA HAMMER	RITPE		A(10	
STRUCT NO	055+0086		D	в	U	м	Surface Water Elev.	ft	D	в	U	м
Station	312+59		Е	L	С	0	Stream Bed Elev.	"t	E	L	С	0
			Ρ	0	S	I			Ρ	0	S	I
BORING NO.	<u>3</u> <u>312+6.5</u>		T	W	•	S	Groundwater Elev.:	_	T	W	•	S
Station	312+6.5		н	S	Qu	Т	First Encounter 612.4		H	S	Qu	Т
Offset Ground Surf	42.5 ft RT ace Elev. <u>623.40</u>	ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion	ft	(ft)	(/6'')	(tsf)	(%)
		IL	(,	,	()	(///	After Hrs.	n	(,	,	(101)	(/0)
dense <i>(continu</i>	nedium dense to						<u>CLAY</u> , gray, very stiff to hard (continued)			-		
										-		
										1		
								559.90		1		
				13			SILTY CLAY, gray, stiff to very stiff			8		
				23		13				9	1.5	27
			-45	25					-65	13	Р	
										-		
										-		
										-		
										1		
		574.00								-		
	ery stiff to hard	574.90		11				554.40		8		
CLAI, gray, ve	ery Suit to Haru			11	1.8	20	CLAY, gray, very stiff	554.40		12	2.1	16
			-50	15	S				-70	4-	В	
					-							
										1		
]		
								550.40				
				10			SAND , gray, dense to very dense					
				12 13	4.3	14				8 12		7
				25	4.3 B	14			-75			1
			-55						-/5			
				1						1		
										1		
			_]					_]		
				10						8		
			_	13	4.5	14		543.90		32		14
			-60	23	В		WEATHERED SHALE, dark gray		-80	50/3"		

Illinois Department of Transportation

SOIL BORING LOG

Date 6/12/13

Page $\underline{3}$ of $\underline{3}$

ROUTE	IL Route 9	_ DES				West Pier Boring	LOGGED	BY AF	
SECTION	120 PD 1			OCAT		950	, TWP. , RNG. ,		
SECTION	120-DR-1		L	UCAI		, 3⊑0. Latitu	de , Longitude		
COUNTY	McDonough DR		MET				HSA	VDE	
				HOD			ПОЛ		7010
			-	Р				_	
STRUCT. NO.	055+0086		D	В	U	M	Surface Water Elev.	 ft	
Station	312+59		E	L	C	0	Stream Bed Elev.	 ft	
			P	0	S				
BORING NO.	3		Т	W	•	S	Groundwater Elev.:		
Station	<u>3</u> <u>312+6.5</u>		н	S	Qu	Т	First Encounter		
Offset	42.5 ft R I		(64)		4-0	(0/)	Upon Completion _	 ft	
Ground Surfa	ace Elev. 623.40	ft	(π)	(/6")	(tsf)	(%)	After Hrs	 ft	
WEATHERED	SHALE, dark gray								
(continued)									
			_						
			_	50/1"/		15			
				50/1		<u>15</u>			
			-85						
		535.90							
Borehole cont	inued with rock								
coring.									
			-90						
			-90						
			-95						
			_						
			_						
			-100						

Page $\underline{1}$ of $\underline{1}$

Illinois Department of Transportation Division of Highways Terracon

ROCK CORE LOG

Date _____6/12/13

ROUTE	IL Route 9	DESCRIPTION	We	st Pier Boring		LO	GGED	BY	AF
OFOTION									
SECTION	120-BR-1	LOCATION _, S	titude, Long	itude					
COUNTY	McDonouah COF	RING METHOD				R		CORE	S
						E	R		Т
STRUCT, NO.	055+0086	CORING BARREL TY	PE & SIZE	NQ Wireline		- C	:	T	R
Station	312+59		-				Q		E
		Core Diameter	2		1 1	フ V マ E	D	M E	N G
BORING NO.	3	Top of Rock Elev.		ft	1 1			E	T
Station	3 312+6.5	Begin Core Elev.	535.90	IL	 	Y			Ĥ
Offset	42.5 π R I					#) (%)	(%)	(min/ft)	(tsf)
	face Elev. <u>623.40</u>							(1111111)	((3))
WEATHERED	INTERBEDDED DOLON	IITE & SHALE , gray		535.90	'	1 33	0		
					_				
					-90				
					\neg				
					_				
				530.90					
End of Boring]								
_									
					-95				
					_				
					_				
					-100				
					_				
					-105				
					\neg				
							1		

Illinois Department of Transportation SOIL

Division of Highways Terracon

SOIL BORING LOG

Date 6/14/13

Page <u>1</u> of <u>3</u>

ROUTE IL Route 9	DESCRIPTION			West Abutment Bor	LC	OGGE	AF					
SECTION 120-BR-1		L		ION _	, SEC.	<u>,</u> TWP. , RNG. <u>,</u> de , Longitude						
COUNTY McDonough D	RILLING	MET	HOD		Latita	-	HAMMER TYPE			AUTO		
STRUCT. NO. 055+0086 Station 312+59 BORING NO. 4 Station 311+41.5 Offset 41.0 ft RT Ground Surface Elev. 623.00		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	607.0	_ ft _ ft⊻_ _ ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
TOPSOIL, approximately 12"			,		(70)	After Hrs. CLAY, gray, stiff to ver (continued)	ry stiff		L	()	(,	(/0)
FILL: CLAY, trace organics, brown	622.00		1 3 5		25	SILT, gray, dense		602.00		15 19 25		18
FILL: SANDY CLAY, brown	619.50		3		14	SAND, gray, medium dense	dense to	000.00		16 19		20
	616.00	-5	3		27				-25	26 8 11		21
FILL: CLAY, brown and gray to gray			4		27				-30	17 5 6 7		18
	610.00		0 1 1		42							
LOAM, gray, soft		-15	1	<.5 P	37	silt seam at 34.5 to 35	5 feet		-35	8 10 16		21
CLAY, gray, stiff to very stiff	606.50	⊻ 	3 5 8	3.5 P	13							
sand seam at 18.5 to 19 feet		-20	3 5 7	2.8 B	13				-40	10 12 15		20

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Terracon Page <u>2</u> of <u>3</u>

Date 6/14/13

ROUTE	IL Route 9	DESCRIPTION					West Abutment Boring	LC	OGGE	AF		
SECTION	120-BR-1		_ L	OCAT	ION _	, SEC.	, TWP. , RNG. ,					
COUNTY	Y McDonough DRILLING METHOD			Latitu	HSA HAMMER	TYPE						
Station	<u>055+0086</u> 312+59 <u>4</u> 311+41.5 41.0 ft RT		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter 607.0	_ ft _ ft.⊻	D E P T H	B L O W S	U C S Qu	M O I S T
Offset Ground Surf	41.0 ft R I face Elev. 623.00	ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion After Hrs	_ ft ft	(ft)	(/6'')	(tsf)	(%)
r	nedium dense to	"					CLAY, gray, stiff to very stiff (continued) SILTY CLAY, gray, stiff	560.00				
		579.00		10			, 3, 4, 7, 44			6		
CLAY, gray, v	ery stiff to hard		-45	17 26	3.5 P	15			-65	7 8	1.5 P	28
SANDY CLAY	, gray, hard	575.00		13				554.00		8		
				15 27	4.0 P	18	<u>CLAY</u> , gray, stiff to very stiff	004.00		10	1.4 B	46
<u>CLAY</u> , gray, s	tiff to very stiff	570.00	50 	5			SANDY CLAY, gray, stiff to very stiff	550.00	70 	8		
			-55	7 12	1.1 S	24			-75	8 13	1.5 P	20
								545.00		50/5",		
sand seam at	58.5 to 59 feet		-60	3 5 9		26	HIGHLY WEATHERED SHALE, gray		-80			13

Illinois Department of Transportation

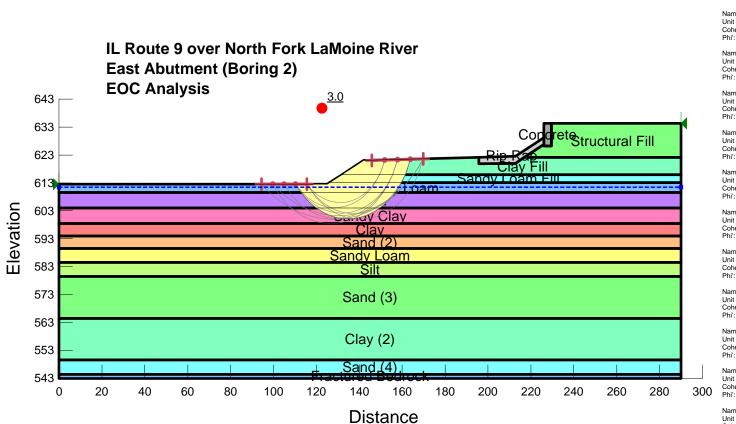
SOIL BORING LOG

Date 6/14/13

Page $\underline{3}$ of $\underline{3}$

ROUTE	IL Route 9	_ DES	SCRI	PTION			West Abutment Bori	ng	LOGG	LOGGED BY	
SECTION	120-BR-1		LOCATION		ION _	, SEC.	, TWP. , RNG. , de , Longitude				
COUNTY	McDonough DR		LLING METHOD			Latitu	· · · · · · · · · · · · · · · · · · ·	HAMMER T	YPE	AUTO	
STRUCT. NO.	055+0086		D E	B L	U C	M	Surface Water Elev.		ft		
Station	312+59		P	0	S	0	Stream Bed Elev.		ft		
BORING NO.	4		Т	W		S	Groundwater Elev.:				
Station	4 311+41.5		н	S	Qu	Т	First Encounter	607.0			
	41.0 ft RT ace Elev. 623.00	— ff	(ft)	(/6'')	(tsf)	(%)	Upon Completion After Hrs.		ft ff		
	THERED SHALE,	_ n	(,	()	(,	(//)			IL		
gray (continue			_								
		539.50									
End of Boring		000.00		50/0"							
C											
			-85								
			-90								
			_								
			-95	- -							
			-100								

EXHIBIT D


SUBSURFACE PROFILE

		0	0.	5	1.0	1.	5		2.0		2.5		3.0	
20									•					
30 · · · ·	3	4 11+41	.5 -Prop. Bottom of W		3 312+6			3	1 13+1	1 5		;	2 313+7(- Pro
	4 NQuw%	1.0 ft F	RT 623.00 TOPSOIL,approximately 12"	N Qu w	42.5 ft ′ [%] ↔	RI 623.4 TOPSOIL, approximately 6"			7.0 ft			N Qu w	45.0 ft	RT 623.00 TOPSOIL, 10"
	8 25	\bigotimes	FILL: CLAY, trace organics, brown	6 2	5			5 19			Pron Bottom	10 23		
	6 14		FILL: SANDY CLAY, brown	8 1		FI	rop. Bottom of Pier #1	5 29		FILL: SANDY CLAY, trace organics, br	Pier #2	4 34		FILL: CLAY, brown, tra
	7 27			2 2		FILL: SANDY CLAY, trace organics, brow	In and gray EL 619.0	2 19		FILL: SANDY LOAM, trace organics, b	EL 619.0	2 22		FILL: SANDY LOAM, g
	2 27 2 42		FILL: CLAY, brown and gray to gray	2 2		SANDY CLAY, gray soft	0.D. EE 012.0	3 19				2 24 6 19	- 1.1.	SANDY CLAY LOAM
	2 42			6 2		SAND, gray, very loose to loose		2 14		SAND, gray, very loose, (possible fill)		2 18	· ///	SANDT CLAT LOAN
	P 13 3.5 13		LOAM, gray, soft	14 2.2 1	4			1 21		-		2 14		SAND, gray, very loos
	P 12 2.8 13		CLAY, gray, stiff to very stiff	B 15 1	6	CLAY, gray, stiff to very stiff		1 <0.5 31 P 1 <0.5 32		SILTY LOAM, gray, very soft CLAY, gray, soft		2 < 0.5 24	777	
	B 44 18		SILT, gray, dense	16 2.2 1 B	4			P 0_0.8_19				P 7 <0.5 27		SANDY CLAY, gray, s
	45 20			31 3.0 1 P		SANDY CLAY, gray, very stiff		P 5 18		SANDY LOAM, gray, medium stiff to st	ff	14 1.2 24 S		
	28 21			26 2			1	4 6				5 14 1.3 14 S		CLAY, gray, stiff
	13 18			27 2	3		3	2 17		•		12 17		CAND area modium
			SAND, gray, dedium dense to dense							SAND, gray, medium dense to dense				SAND, gray, medium c
	26 21			22 1	9		1	9 20				26 19		SANDY LOAM
	07 00			17 1	8	SAND, gray, medium dense to dense				·] -		04 00		
	27 20						2	.6 18		SILTY LOAM, gray, very stiff		31 20		SILT, gray, dense
	43 3.5 15	7777		48 1	3							14 17	•	
	43 3.5 15 P		CLAY, gray, very stiff to hard				0	61 11		SAND, gray, very dense				
	42 4.0 18			26 1.8 2 S	o 📶		4	1 4.5 14	7777	3		28 19		
	Р		SANDY CLAY, gray, hard	3				P		SANDY CLAY, greenish-brown, very st	ff to hard			SAND, gray, medium o
	19 1.1 24 S			38 4.3 1 B	4	CLAY, gray, very stiff to hard	2	25 1.8 30 S				60 10		
	5		CLAY, gray, stiff to very stiff			CLAT, gray, very still to hard		S						
	14 26		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	36 4.5 1 B	4		1	5 3.0 27				28 1.3 32 S		
				20.45.0	-			г 		CLAV are stiff to you stiff				
	15 1.5 28 P		SILTY CLAY, gray, stiff	22 1.5 2 P	'	SILTY CLAY, gray, stiff to very stiff	1	5 1.9 20 S		CLAY, gray, stiff to very stiff		9 1.1 31 S		CLAY, gray, stiff to ver
	00 1 4 46			27 2.1 1	6							20 1 0 10		
	22 1.4 46 B		CLAY, gray, stiff to very stiff	27 2.1 1 B		CLAY, gray, very stiff	2	27 1.3 17 S				20 1.9 19 S		
	21 1.5 20 P			37 7		1		6 18		4		32 14		
	P		SANDY CLAY, gray, stiff to very stiff			SAND, gray, dense to very dense	4	6 18		SAND, gray, dense				SAND, gray, medium o
				50/3"				14		WEATHERED INTERBEDDED DOLOI	NTE & SHALE		XZ	543.5 FRACTURED B
			HIGHLY WEATHERED SHALE			WEATHERED SHALE, dark gray		16		541.5 BTM EL				BTM EL
			539.5 BTM EL			WEATHERED SHALE, Uark gray								
					-									
						WEATHERED INTERBEDDED DOLOMI	TE & SHALE							
					····	[∃] 530.9 BTM EL								
		0	0.	F	1.0	1.	5		2.0		2.5		2.0	
		0	0.	5	1.0		5		2.0		2.5		3.0	
	T	7	1 1									SUE	BSL	JRFACE
1		L'a	askaskia											
		Eng	gineering Group, LLC									outo		oute 9
		· ·	0 0 I'											
														20-BR-1
												aunt /	N /	cDonougl

	E IL 9 o. N. Fork LaMoine	Divor
3	.5	530
		540
m dense D BEDROCK		
		550
very stiff		
		560
		570
m dense to very dens	e	
		580
		590
m dense		
v, soft to medium stiff		600
ose		
И, gray M		610
trace organics		620
"	L. Abut. LL 020.00	
rop Bottom of	E. Abut. EL 626.66	630
3	.5	

EXHIBIT E

SLOPE/W SLOPE STABILITY ANALYSIS

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 1,500 psf Phi': 0 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 900 psf Phi': 0 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 250 psf Phi': 0 °

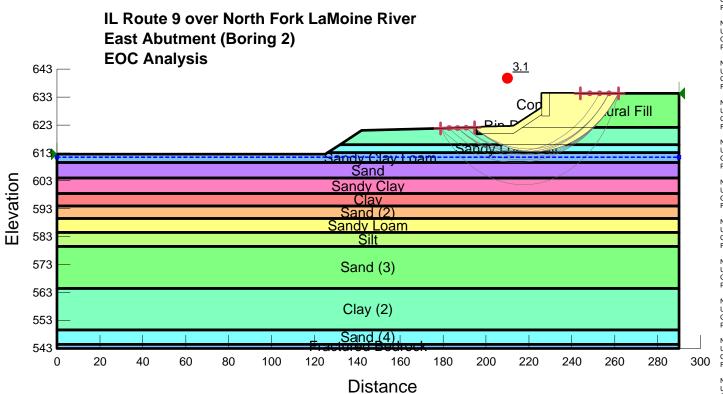
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 750 psf Phi': 0 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 500 psf Phi': 0 °

Name: Clay Unit Weight: 125 pcf Cohesion': 1,250 psf Phi': 0 °

Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 3,250 psf Phi': 0 °

Name: Silt Unit Weight: 115 pcf Cohesion': 3,900 psf Phi': 0 °

Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

Name: Clay (2) Unit Weight: 125 pcf Cohesion': 1,433 psf Phi': 0 °

Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 1,500 psf Phi': 0 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 900 psf Phi': 0 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 250 psf Phi': 0 °

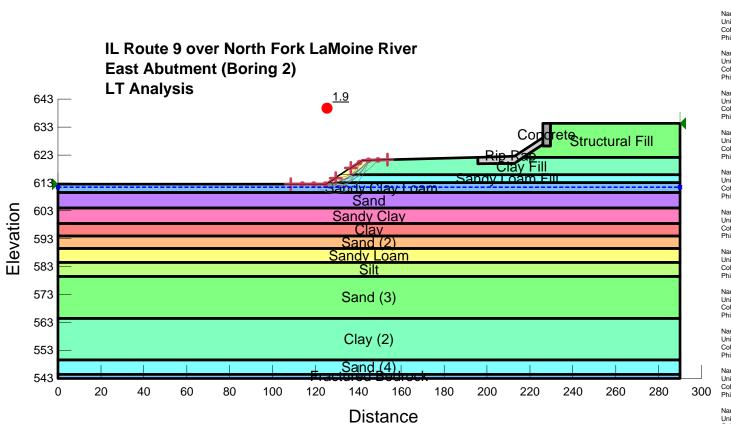
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 750 psf Phi': 0 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 500 psf Phi': 0 °

Name: Clay Unit Weight: 125 pcf Cohesion': 1,250 psf Phi': 0 °

Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 3,250 psf Phi': 0 °

Name: Silt Unit Weight: 115 pcf Cohesion': 3,900 psf Phi': 0 °

Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

Name: Clay (2) Unit Weight: 125 pcf Cohesion': 1,433 psf Phi': 0 °

Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 50 psf Phi': 32 °

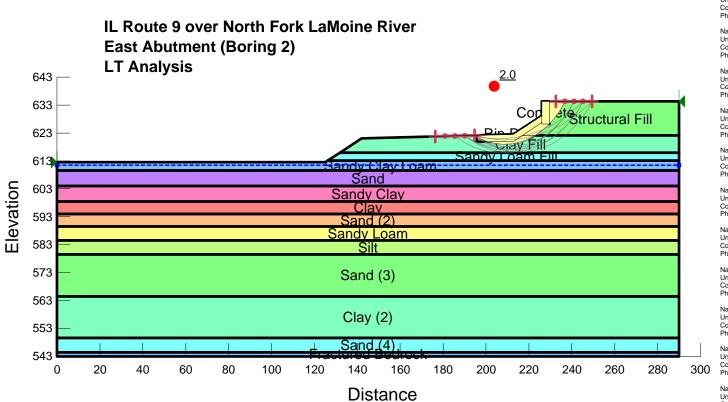
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 50 psf Phi': 30 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 50 psf Phi': 27 °

Name: Clay Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 100 psf Phi': 32 °

Name: Silt Unit Weight: 115 pcf Cohesion': 100 psf Phi': 28 °

Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

Name: Clay (2) Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 50 psf Phi': 32 °

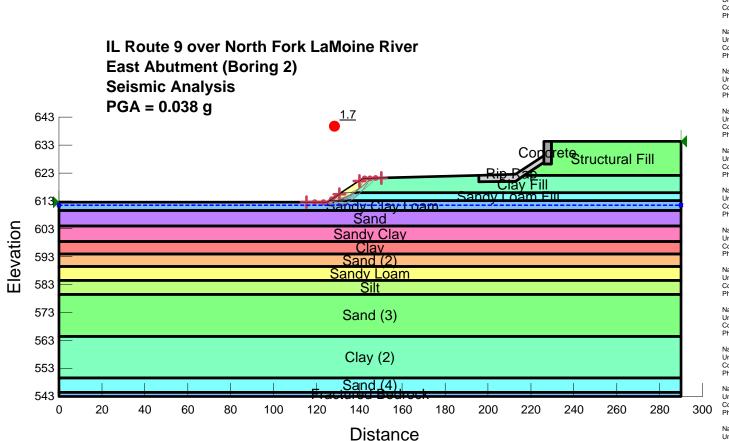
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 50 psf Phi': 30 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 50 psf Phi': 27 °

Name: Clay Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 100 psf Phi': 32 °

Name: Silt Unit Weight: 115 pcf Cohesion': 100 psf Phi': 28 °

Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

Name: Clay (2) Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 50 psf Phi': 32 °

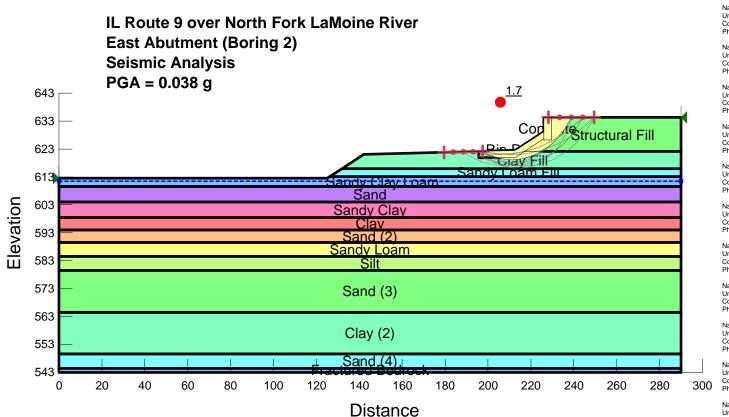
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 50 psf Phi': 30 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 50 psf Phi': 27 °

Name: Clay Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 100 psf Phi': 32 °

Name: Silt Unit Weight: 115 pcf Cohesion': 100 psf Phi': 28 °

Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

Name: Clay (2) Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

Name: Rip Rap Unit Weight: 145 pcf Cohesion': 0 psf Phi': 45 °

Name: Structural Fill Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °

Name: Clay Fill Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sandy Loam Fill Unit Weight: 115 pcf Cohesion': 50 psf Phi': 32 °

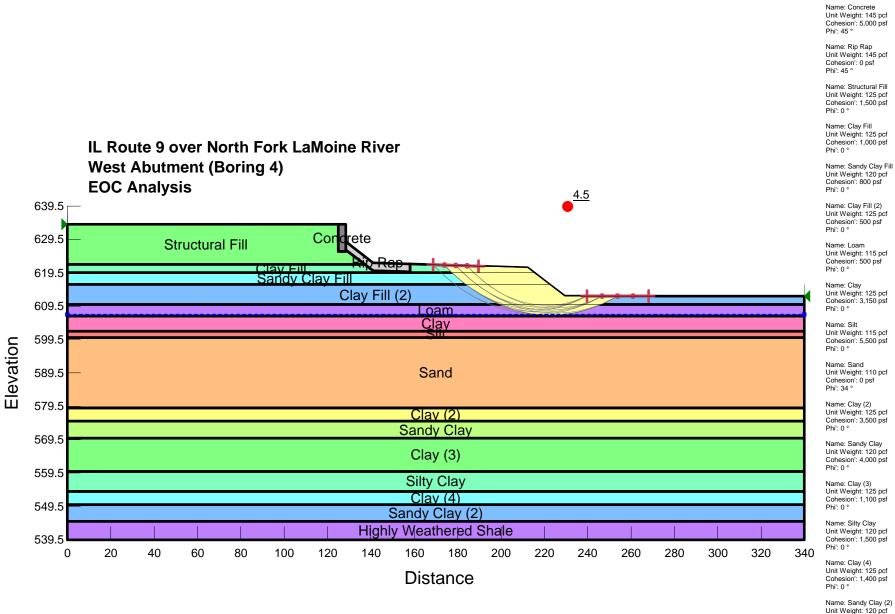
Name: Sandy Clay Loam Unit Weight: 120 pcf Cohesion': 50 psf Phi': 30 °

Name: Sand Unit Weight: 110 pcf Cohesion': 0 psf Phi': 32 °

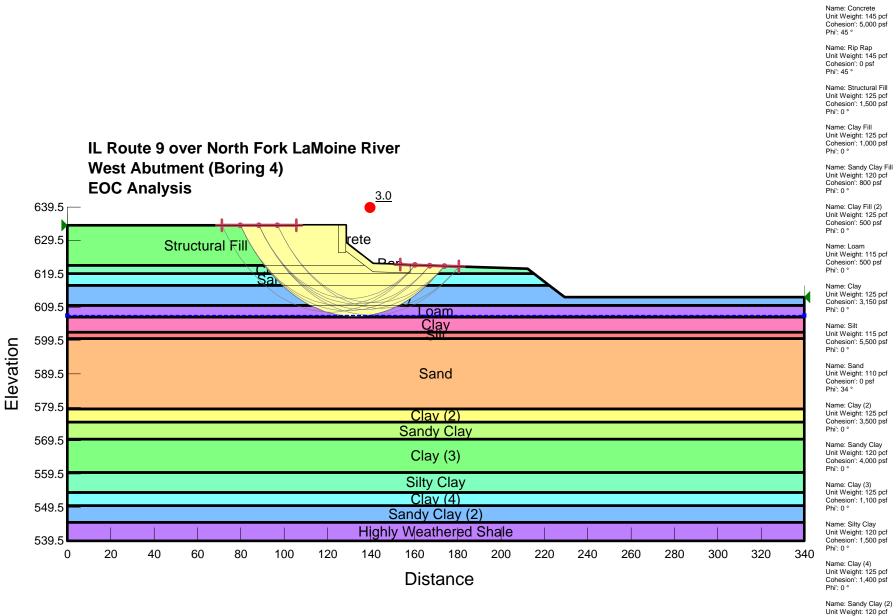
Name: Sandy Clay Unit Weight: 120 pcf Cohesion': 50 psf Phi': 27 °

Name: Clay Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

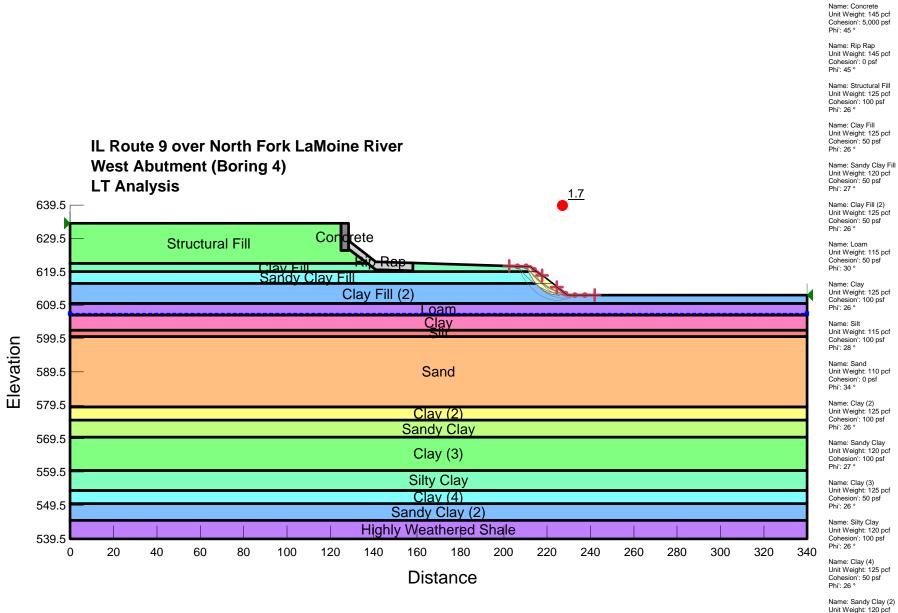
Name: Sand (2) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °

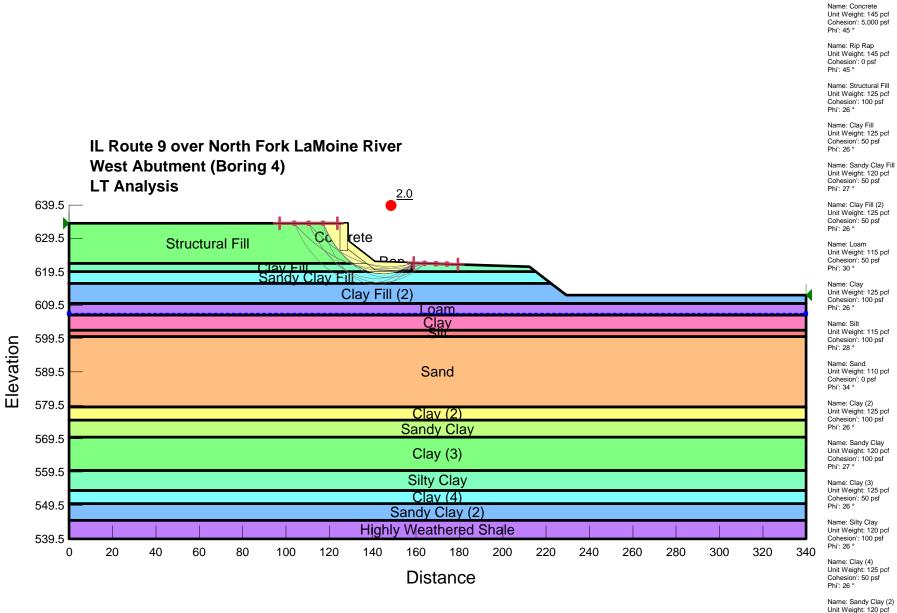

Name: Sandy Loam Unit Weight: 115 pcf Cohesion': 100 psf Phi': 32 °

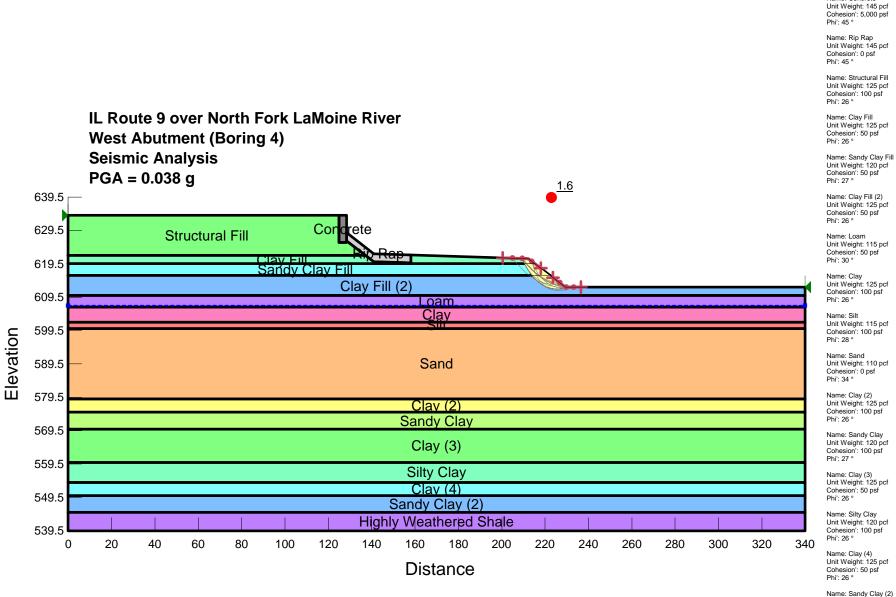
Name: Silt Unit Weight: 115 pcf Cohesion': 100 psf Phi': 28 °


Name: Sand (3) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 36 °

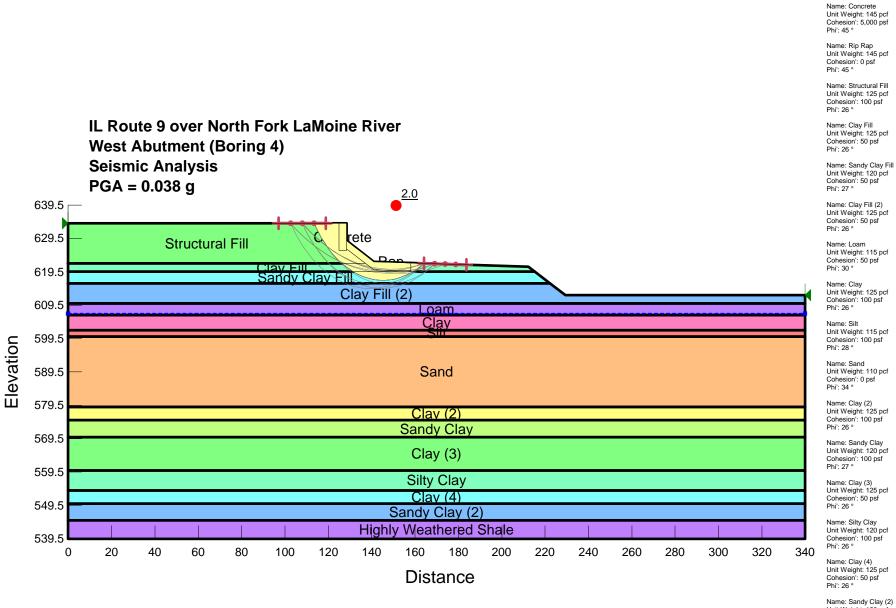
Name: Clay (2) Unit Weight: 125 pcf Cohesion': 100 psf Phi': 26 °


Name: Sand (4) Unit Weight: 110 pcf Cohesion': 0 psf Phi': 34 °


Cohesion': 1,500 psf Phi': 0 °


Cohesion': 1,500 psf Phi': 0 °

Cohesion': 100 psf Phi': 27 °



Cohesion': 100 psf Phi': 27 °

Name: Sandy Clay (2 Unit Weight: 120 pcf Cohesion': 100 psf Phi': 27 °

Name: Concrete

Unit Weight: 120 pcf Cohesion': 100 psf Phi': 27 °

EXHIBIT F

ILLINOIS STATE GEOLOGICAL SURVEY

MINE MAP

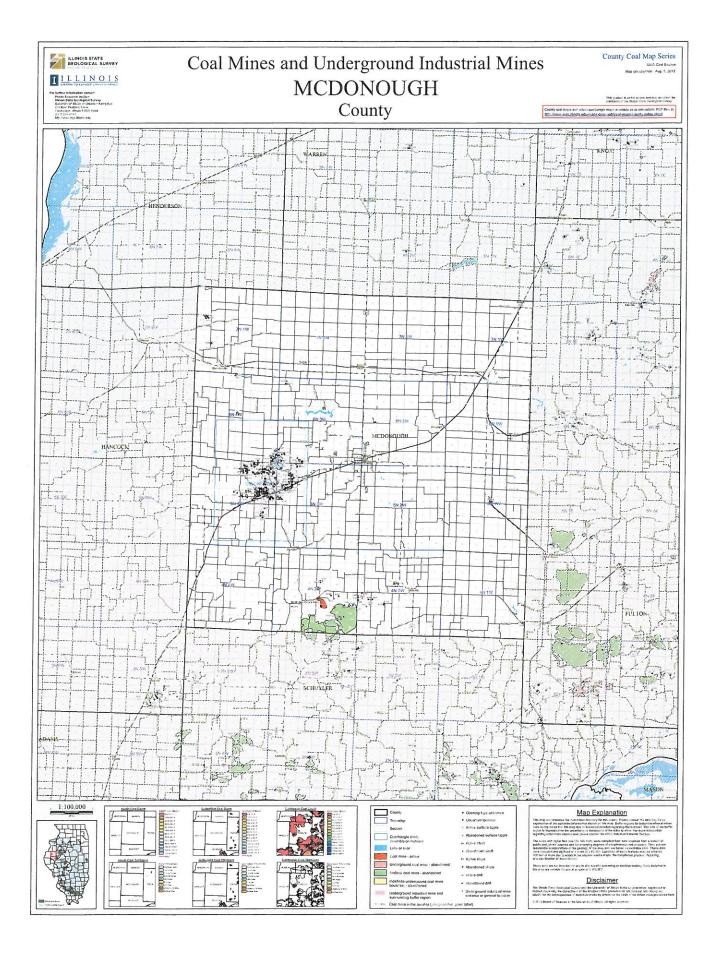


EXHIBIT G

PILE LENGTH/PILE TYPE

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTUREEast Abut. REFERENCE BORING	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI 623.16 ft	929 KIPS	929 KIPS	511 KIPS	92 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) Scour				
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======= 626.16 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ==================================				
TOTAL FACTORED SUBSTRUCTURE LOAD ======== 900 kips				
TOTAL LENGTH OF SUBSTRUCTURE (along skew)==== 36.40 ft				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE = 1				
Approx. Factored Loading Applied per pile at 8 ft. Cts =====: 197.80 KIPS				
Approx. Factored Loading Applied per pile at 3 ft. Cts ====== 74.18 KIPS				

PILE TYPE AND SIZE ====== Steel HP 14 X 117

4.850 FT.

Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=====

7.117 FT. 0.239 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	MINAL PLUG	GED	NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH (TSF.)	VALUE	DESCRIPTION	RESIST. (KIPS)	RESIST.	RESIST.	RESIST.	RESIST.	RESIST. (KIPS)	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
<i>(FT.)</i> 622.10	(FT.) 1.06	(ISF.) 1.50	(BLOWS) 8		(KIPS) 4.9	(KIPS)	(KIPS) 31.7	(KIPS) 7.3	(KIPS)	(KIPS) 11.6	(KIPS) 12	(KIPS) 0	(KIPS) 0	(KIPS) 6	(FT.) 6
619.60	2.50	1.30	。 10		4.9	26.8	25.8	15.5	4.4	24.4	24	0	0	13	9
617.10	2.50	0.50	4		4.7	10.3	30.5	6.9	1.7	31.3	31	0	0	17	11
616.00	1.10	0.50	4		2.1	10.3	27.4	3.1	1.7	33.6	27	0	Ő	15	12
614.50	1.50	0.25	2		1.5	5.1	28.9	2.2	0.8	35.7	29	0	0	16	14
613.00	1.50	0.25	2		1.5	5.1	40.7	2.2	0.8	39.6	40	0	0	22	15
611.00	2.00	0.75	6		5.4	15.4	46.1	8.0	2.5	47.5	46	0	0	25	17
609.50	1.50	0.75	6		4.1	15.4	42.1	6.0	2.5	52.2	42	0	0	23	19
607.00	2.50		2	Medium Sand	0.4	7.3	42.5	0.6	1.2	52.8	43	0	0	23	21
604.00	3.00		2	Medium Sand	0.5	7.3	46.0	0.8	1.2	54.1	46	0	0	25	24
602.00	2.00	0.50	2		3.8	10.3	49.8	5.5	1.7	59.6	50	0	0	27	26
599.50	2.50	0.50	7		4.7	10.3	68.9	6.9	1.7	68.9	69	0	0	38	29
597.00	2.50	1.20	14		9.9	24.7	80.9	14.6	4.0	83.8	81	0	0	45	31
594.00 592.00	3.00 2.00	1.30	14 12	Medium Sand	12.7 2.1	26.8 43.9	110.7 112.9	18.6 3.1	4.4 7.1	105.2 108.3	105 108	0 0	0	58 60	34 36
592.00	2.00		12	Medium Sand	2.1	43.9	138.5	3.1	7.1	115.9	116	0	0	64	39
587.00	2.50	3.25	26	Medium Sanu	19.7	43.9 66.9	158.2	28.8	10.9	144.8	145	0	0	80	41
584.50	2.50	3.25	26		19.7	66.9	196.0	28.8	10.9	176.6	177	0	0	97	44
582.00	2.50	0.20	31	Hard Till	4.1	85.1	200.1	6.0	13.8	182.6	183	Ő	ő	100	46
579.50	2.50		31	Hard Till	4.1	85.1	170.3	6.0	13.8	183.0	170	0	0	94	49
574.50	5.00		14	Medium Sand	6.2	51.2	227.7	9.1	8.3	200.5	200	0	0	110	54
569.50	5.00		28	Medium Sand	12.6	102.5	357.5	18.5	16.7	238.0	238	0	0	131	59
564.50	5.00		60	Medium Sand	46.3	219.6	210.9	67.9	35.7	274.6	211	0	0	116	64
559.50	5.00	1.30	28		21.1	26.8	227.9	30.9	4.4	304.9	228	0	0	125	69
554.50	5.00	1.10	9		18.6	22.7	263.0	27.3	3.7	334.8	263	0	0	145	74
549.50	5.00	1.90	20		27.3	39.1	368.3	40.1	6.4	387.6	368	0	0	203	79
547.00	2.50		32	Medium Sand	7.6	117.1	375.9	11.2	19.0	398.8	376	0	0	207	81
544.50	2.50		32	Medium Sand	7.6	117.1	449.4	11.2	19.0	420.7	421	0	0	231	84
543.50	1.00			Shale	60.4	183.0	509.9	88.7	29.8	509.3	509	0	0	280	84.7
542.50	1.00			Shale	60.4	183.0	570.3	88.7	29.8	598.0	570	0	0	314	85.7
541.50	1.00			Shale	60.4	183.0	630.7	88.7	29.8	686.6	631	0	0	347	86.7
540.50	1.00			Shale	60.4	183.0	691.1	88.7	29.8	775.3	691	0	0	380	87.7
539.50 538.50	1.00 1.00			Shale	60.4 60.4	183.0 183.0	751.5 812.0	88.7 88.7	29.8 29.8	864.0 952.6	752 812	0	0	413 447	88.7 89.7
538.50 537.50	1.00			Shale Shale	60.4 60.4	183.0	812.0	88.7	29.8	952.6 1041.3	812	0	0	447 480	89.7 90.7
537.50 536.50	1.00			Shale	60.4 60.4	183.0	872.4 932.8	88.7	29.8	1129.9	872 933	0 0	0 0	480 513	90.7 91.7
535.50 535.50	1.00			Shale	60.4	183.0	932.0 993.2	88.7	29.8	129.9	993	Ð	Ð	546	91.7 92.7
534.50	1.00			Shale	00.4	183.0	333.2	00.7	29.8	1210.0		A	A	010	02.1
004.00	1.00			Unaic		105.0		I	20.0	I	1	I I		I I	

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	Maximum Nominal Maximum Nominal Maximum Factored Maximum Pile
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile Req.d Bearing of Boring Resistance Available in Boring Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI 607.30 ft	929 KIPS 929 KIPS 496 KIPS 92 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) Scour	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======= 594.50 ft	
TOP ELEV. OF LIQUEF. (so layers above apply DD) =========== ft	
TOTAL FACTORED SUBSTRUCTURE LOAD ======= 1900 kips	
TOTAL LENGTH OF SUBSTRUCTURE (along skew)==== 36.40 ft	
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE = 2	
Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 208.75	KIPS
Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 78.30	KIPS

 PILE TYPE AND SIZE =====
 Steel HP 14 X 117

 Plugged Pile Perimeter====
 4.850
 FT.

ſ

Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=====

7.117 FT. 0.239 SQFT.

BOT.					NON	IINAL PLUG	GED	NON	INAL UNPLU	IG'D		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR			-	_		-	NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
604.02	3.28	0.50			6.2		16.5	9.1		10.8	11	3	0	3	24
602.52	1.50	0.50			2.8	10.3	25.5	4.2	1.7	15.9	16	5	0	4	25
600.02	2.50	0.80			7.2	16.5	32.7	10.5	2.7	26.4	26	9	0	6	28
596.52	3.50	0.80			10.0	16.5	77.5	14.7	2.7	46.8	47	14	0	11	31
594.02	2.50		14	Medium Sand	3.1	51.2	146.5	4.5	8.3	62.1	62	14	-	20	34
591.52	2.50		32	Medium Sand	7.6	117.1	106.5	11.2	19.0	65.5	66	14	0	22 31	36
584.02 581.52	7.50	0.00	19	Medium Sand	12.6 18.5	69.6	111.3 291.4	18.5 27.2	11.3 10.0	82.7 136.2	83 136	14 14	0	31 60	44 46
573.52	2.50 8.00	3.00	61	Medium Sand	76.2	61.8 223.3	291.4	27.2 111.8	36.3	230.0	230	14	0	112	46 54
569.02	4.50		41	Hard Till	10.2	112.6	230.9 191.7	15.2	18.3	233.0	192	14	0	91	59
566.52	4.50 2.50	1.80	41		13.2	37.1	229.6	19.3	6.0	256.4	230	14	0	112	61
561.52	2.50 5.00	3.00			37.1	61.8	229.0	19.3 54.4	10.0	307.1	230	14	0	120	66
556.52	5.00	1.90			27.3	39.1	259.0	40.1	6.4	345.2	259	14	0	120	71
549.02	7.50	1.30			31.6	26.8	432.3	46.4	4.4	414.6	415	14	õ	214	79
544.02	5.00		46	Medium Sand	28.2	168.4	475.2	41.4	27.4	458.4	458	14	0	238	84
543.02	1.00			Shale	60.4	183.0	535.6	88.7	29.8	547.1	536	14	0	280	84.8
542.02	1.00			Shale	60.4	183.0	596.0	88.7	29.8	635.7	596	14	0	313	85.8
541.02	1.00			Shale	60.4	183.0	656.4	88.7	29.8	724.4	656	14	0	347	86.8
540.02	1.00			Shale	60.4	183.0	716.8	88.7	29.8	813.0	717	14	0	380	87.8
539.02	1.00			Shale	60.4	183.0	777.2	88.7	29.8	901.7	777	14	0	413	88.8
538.02	1.00			Shale	60.4	183.0	837.7	88.7	29.8	990.3	838	14	0	446	89.8
537.02	1.00			Shale	60.4	183.0	898.1	88.7	29.8	1079.0	898	14	0	480	90.8
536.02	1.00			Shale	60.4	183.0	958.5	88.7	29.8	1167.6	959	-14	θ	513	91.8
535.02	1.00			Shale	60.4	183.0	1018.9	88.7	29.8	1256.3	1019	-14	θ	546	-92.8
534.02	1.00			Shale	60.4	183.0	1079.3	88.7	29.8	1345.0	1079	14	θ	579	93.8
533.02	1.00			Shale	60.4	183.0	1139.8	88.7	29.8	1433.6	1140	14	θ	612	94.8
532.02	1.00			Shale	60.4	183.0	1200.2	88.7	29.8	1522.3	1200	-14	θ	646	95.8
531.02	1.00			Shale	60.4	183.0	1260.6	88.7	29.8	1610.9	1261	-14	θ	679	96.8
530.02	1.00			Shale	60.4	183.0	1321.0	88.7	29.8	1699.6	1321	-14	θ	712	97.8
529.02	1.00			Shale	60.4	183.0	1381.4	88.7	29.8	1788.2	1381	14	θ	745	98.8
528.02	1.00			Shale	60.4	183.0	1441.8	88.7	29.8	1876.9	1442	14	θ	779	99.8
527.02	1.00			Shale	60.4	183.0	1502.3	88.7	29.8	1965.5	1502	-14	Ð	812	-100.8
526.02	1.00			Shale	60.4	183.0	1562.7	88.7	29.8	2054.2	1563	14	Ð	845	101.8
525.02	1.00			Shale	60.4	183.0	1623.1	88.7	29.8	2142.8	1623	14	Ð	878	102.8
524.02	1.00			Shale	60.4	183.0	1683.5	88.7	29.8	2231.5	1684	14	Ð	912	103.8
523.02	1.00			Shale	60.4	183.0	1743.9	88.7	29.8	2320.1	1744	14	Ð	945	104.8
522.02	1.00			Shale	60.4	183.0	1804.3	88.7	29.8	2408.8	1804	-14	θ	978	-105.8
521.02	1.00			Shale		183.0			29.8					I I	I

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	West Abut 4	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	LRFD	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	627.82 ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI	622.82 ft	929 KIPS	929 KIPS	511 KIPS	92 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD)	Scour				
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =======	625.82 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ====	====== ft				
TOTAL FACTORED SUBSTRUCTURE LOAD ========	900 kips				
TOTAL LENGTH OF SUBSTRUCTURE (along skew)====	36.40 ft				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =	1				
Approx. Factored Loading Applied per pile at 8 ft.	Cts =====: 197.80 KIPS				
Approx. Factored Loading Applied per pile at 3 ft. C	Cts =====: 74.18 KIPS				

PILE TYPE AND SIZE ====== Steel HP 14 X 117

Г

4.850 FT.

Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=====

7.117 FT.

0.239 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NO	NOMINAL PLUGGED			MINAL UNPLU	NOMINAL UNPLUG'D			FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER ELEV. (FT.)	LAYER THICK. (FT.)	COMPR. STRENGTH (TSF.)	N VALUE (BLOWS)	OR ROCK LAYER DESCRIPTION	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	REQ'D BEARING (KIPS)	LOSS FROM SCOUR or DD (KIPS)	LOSS LOAD FROM DD (KIPS)	RESISTANCE AVAILABLE (KIPS)	PILE LENGTH (FT.)
622.00	0.82	1.50	8		3.8		24.4	5.6		9.0	9	0	0	5	6
619.50	2.50	1.00	8		8.6	20.6	27.9	12.6	3.3	20.8	21	0	0	11	8
617.50	2.00	0.75	6		5.4	15.4	36.4	8.0	2.5	29.2	29	0	0	16	10
616.00	1.50	0.90	7		4.7	18.5	27.8	7.0	3.0	34.0	28	0	0	15	12
613.00	3.00	0.25	2		3.0	5.1	30.7	4.3	0.8	38.4	31	0	0	17	15
610.00	3.00	0.25	2		3.0	5.1	38.8	4.3	0.8	43.5	39	0	0	21	18
606.50	3.50	0.50	2		6.6	10.3	107.2	9.7	1.7	63.3	63	0	0	35	21
604.50	2.00	3.50	13		16.6	72.1	109.4	24.4	11.7	85.3	85	0	0	47	23
602.00	2.50	2.80	12		17.7	57.7	190.2	25.9	9.4	121.5	122	0	0	67	26
600.00	2.00		44	Hard Till	5.1	120.8	239.2	7.5	19.6	136.1	136	0	0	75	28
597.00	3.00		45	Medium Sand	16.3	164.7	193.3	23.9	26.8	149.9	150	0	0	82	31
594.50	2.50		28	Medium Sand	6.3	102.5	144.7	9.3	16.7	150.2	145	õ	Ő	80	33
589.50	5.00		13	Medium Sand	5.7	47.6	198.0	8.4	7.7	166.4	166	ŏ	ŏ	92	38
584.50	5.00		26	Medium Sand	11.5	95.2	213.2	16.9	15.5	183.9	184	0	0	101	43
579.00	5.50		27	Medium Sand	13.3	98.8	245.7	19.5	16.1	206.4	206	0	0	114	49
575.00	4.00		43	Hard Till	9.9	118.1	252.8	14.5	19.2	220.5	220	0	0	121	53
570.00	5.00		42	Hard Till	11.9	115.3	172.0	17.5	18.7	222.9	172	0	0	95	58
564.50	5.50	1.10	19		20.4	22.7	192.5	30.0	3.7	252.9	192	0	0	106	63
560.00	4.50	1.10	14		16.7	22.7	217.4	24.5	3.7	278.8	217	0	0	120	68
554.00	6.00	1.50	15		28.0	30.9	243.4	41.1	5.0	319.5	243	0	0	134	74
550.00	4.00	1.40	22		17.8	28.8	263.2	26.1	4.7	345.9	263	0	0	145	78
545.00	5.00	1.50	21		23.3	30.9	438.7	34.2	5.0	404.9	405	0	0	223	83
544.00	1.00			Shale	60.4	183.0	499.1	88.7	29.8	493.6	494	0	0	271	83.8
543.00	1.00			Shale	60.4	183.0	559.5	88.7	29.8	582.2	560	0	0	308	84.8
542.00	1.00			Shale	60.4	183.0	619.9	88.7	29.8	670.9	620	0	0	341	85.8
541.00	1.00			Shale	60.4	183.0	680.4	88.7	29.8	759.5	680	0	0	374	86.8
540.00	1.00			Shale	60.4	183.0	740.8	88.7	29.8	848.2	741	0	0	407	87.8
539.00	1.00			Shale	60.4	183.0	801.2	88.7	29.8	936.8	801	0	0	441	88.8
538.00	1.00			Shale	60.4	183.0	861.6	88.7	29.8	1025.5	862	0	0	474	89.8
537.00	1.00			Shale	60.4	183.0	922.0	88.7	29.8	1114.1	922	0	0	507	90.8
536.00	1.00			Shale	60.4	183.0	982.4	88.7	29.8	1202.8	982	Ð	Ð	540	91.8
535.00	1.00			Shale	60.4	183.0	1042.9	88.7	29.8	1291.4	1043	0	Ð	574	92.8
534.00	1.00			Shale	60.4	183.0	1103.3	88.7	29.8	1380.1	1103	Ð	Ð	607	93.8
533.00	1.00			Shale	60.4	183.0	1163.7	88.7	29.8	1468.7	1164	0	Ð	640	94.8
532.00	1.00			Shale	60.4	183.0	1224.1	88.7	29.8	1557.4	1224	θ	Ð	673	95.8
531.00	1.00			Shale	60.4	183.0	1284.5	88.7	29.8	1646.0	1285	θ	Ð	706	96.8
530.00	1.00			Shale	60.4	183.0	1344.9	88.7	29.8	1734.7	1345	θ	Ð	740	97.8
529.00	1.00			Shale	00.4	183.0	1011.0	00.7	29.8	1104.1	1040	v	Ŭ	140	07.0

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	Pier #1 Wo 3	est	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	LRFD		Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	627.80	ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI	607.30	ft	929 KIPS	929 KIPS	495 KIPS	93 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD)	Scour					
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ========	601.95	ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) =====		ft				
TOTAL FACTORED SUBSTRUCTURE LOAD ========	1900	kips				
TOTAL LENGTH OF SUBSTRUCTURE (along skew)====	36.40	ft				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =	2					
Approx. Factored Loading Applied per pile at 8 ft. C	ts =====	208.79 KIPS				

Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 78.30 KIPS

PILE TYPE AND SIZE ====== Steel HP 14 X 117

Г

4.850 FT.

Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=====

7.117 FT.

0.239 SQFT.

BOT. OF UNCONF. S.P.T. GRANULAR LAYER LAYER COMPR. N OR ROCK LAYEI	NO SIDE	MINAL PLUG	GED					FACTORED	FAOTODED		
	SIDE	NOMINAL PLUGGED			NOMINAL UNPLUG'D			GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
		END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. THICK. STRENGTH VALUE DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.) (FT.) (TSF.) (BLOWS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
604.90 2.40 2.20 14	14.4		53.5	21.1		27.5	27	8	0	7	23
602.40 2.50 1.90 15	13.7	39.1	73.4	20.0	6.4	48.5	49	15	0	11	25
599.90 2.50 2.20 16	15.0	45.3	104.8	22.0	7.4	73.2	73	15	0	25	28
597.40 2.50 3.00 31	18.5	61.8	156.8	27.2	10.0	105.9	106	15	0	43	30
594.90 2.50 26 Medium Sand	5.8	95.2	166.2	8.4	15.5	114.9	115	15	0	48	33
589.90 5.00 27 Medium Sand	12.1	98.8	160.0	17.7	16.1	129.6	130	15	0	56	38
584.90 5.00 22 Medium Sand	9.7	80.5	151.4	14.3	13.1	140.9	141	15	0	62	43
579.90 5.00 17 Medium Sand	7.5	62.2	272.4	11.0	10.1	170.4	170	15	0	78	48
574.90 5.00 48 Medium Sand	30.6	175.7	164.3	44.8	28.6	192.7	164	15	0	75	53
569.90 5.00 1.80 26	26.4	37.1	257.9	38.7	6.0	242.3	242	15	0	118	58
564.90 5.00 38 Hard Till	10.4	104.3	262.8	15.3	17.0	256.7	257	15	0	126	63
559.90 5.00 36 Hard Till	9.7	98.8	204.6	14.3	16.1	259.9	205	15	0	97	68
554.40 5.50 1.50 22 550.40 4.00 2.10 27	25.7 23.3	30.9 43.2	242.6	37.6	5.0 7.0	299.6	243 349	15 15	0	118 176	73 77
550.40 4.00 2.10 27 543.90 6.50 37 Medium Sand	23.3	43.2 135.4	358.1 430.6	34.2 36.6	22.0	348.7 393.1	349	15	0	201	84
542.90 1.00 Shale	60.4	183.0	430.6	88.7	22.0	481.7	482	15	0	250	84.9
541.90 1.00 Shale	60.4	183.0	551.5	88.7	29.8	570.4	551	15	0	288	85.9
540.90 1.00 Shale	60.4	183.0	611.9	88.7	29.8	659.0	612	15	0	321	86.9
539.90 1.00 Shale	60.4	183.0	672.3	88.7	29.8	747.7	672	15	0	354	87.9
538.90 1.00 Shale	60.4	183.0	732.7	88.7	29.8	836.3	733	15	0	388	88.9
537.90 1.00 Shale	60.4	183.0	793.1	88.7	29.8	925.0	793	15	0	421	89.9
536.90 1.00 Shale	60.4	183.0	853.6	88.7	29.8	1013.7	854	15	õ	454	90.9
535.90 1.00 Shale	60.4	183.0	914.0	88.7	29.8	1102.3	914	15	õ	487	91.9
534.90 1.00 Shale	60.4	183.0	974.4	88.7	29.8	1191.0	974	15	Ð	520	92.9
533.90 1.00 Shale	60.4	183.0	1034.8	88.7	29.8	1279.6	1035	15	Ð	554	93.9
532.90 1.00 Shale	60.4	183.0	1095.2	88.7	29.8	1368.3	1095	15	Ð	587	94.9
531.90 1.00 Shale	60.4	183.0	1155.6	88.7	29.8	1456.9	1156	-15	Ð	620	95.9
530.90 1.00 Shale	60.4	183.0	1216.1	88.7	29.8	1545.6	1216	-15	Ð	653	96.9
529.90 1.00 Shale	60.4	183.0	1276.5	88.7	29.8	1634.2	1276	-15	θ	687	97.9
528.90 1.00 Shale	60.4	183.0	1336.9	88.7	29.8	1722.9	1337	15	θ	720	98.9
527.90 1.00 Shale	60.4	183.0	1397.3	88.7	29.8	1811.5	1397	15	Ð	753	99.9
526.90 1.00 Shale	60.4	183.0	1457.7	88.7	29.8	1900.2	1458	-15	θ	786	100.9
525.90 1.00 Shale	60.4	183.0	1518.1	88.7	29.8	1988.8	1518	15	θ	820	101.9
524.90 1.00 Shale	60.4	183.0	1578.6	88.7	29.8	2077.5	1579	15	θ	853	102.9
523.90 1.00 Shale	60.4	183.0	1639.0	88.7	29.8	2166.1	1639	15	θ	886	103.9
522.90 1.00 Shale	60.4	183.0	1699.4	88.7	29.8	2254.8	1699	15	θ	919	104.9
521.90 1.00 Shale	60.4	183.0	1759.8	88.7	29.8	2343.5	1760	-15	θ	952	105.9
520.90 1.00 Shale		183.0			29.8						