STRUCTURE GEOTECHNICAL REPORT

INTERSTATE I-74 OVER INTERSTATE I-57 (STATION 1061+40.60)

Existing SN: 010-0018 & 010-0019 Proposed SN: 010-1018 & 010-1019

F.A.I. RTE. 74/57 Section 10 (5-1-RS-1, 14-1,6) R Champaign County

> Contract No.: 70897 P-95-030-11 PTB: 161-28

Prepared By: Christopher N. Farmer, P.E. Bacon Farmer Workman Engineering & Testing, Inc. 500 South 17th Street Paducah, Kentucky 42003 Phone: (270) 443-1995 Email: cfarmer@bfwengineers.com

Prepared For: Brad Rotherham, P.E., S.E. Bacon Farmer Workman Engineering & Testing, Inc. 403 N. Court Street Marion, Illinois 62959 Phone: (618) 997-9190

CHRISTOPHER N. FARMER 062-060592 11/03/2020 Ex. 11/30/2021

Report Date: November 3, 2020 (REV 3) February 20, 2020 (REV 2) August 4, 2016 (REV 1) November 11, 2015 (Original) Attachments: Soil Boring Location Map Preliminary TS&L Subsurface Boring Logs Boring Profile Sheet Pile Capacity Tables Integral Abut.Pile Selection Chart

1.0 Project Description

The purpose of this geotechnical study is to explore the existing subsurface conditions present at the existing structure location (SN 010-0018 & 010-0019) (Station 1061+40.60) carrying I-74 over I-57 in Section 10R, Township 20 North, Range 8 East of the 3rd PM in the city of Champaign, Champaign County, Illinois. These structures will be replaced by proposed structures SN 010-1018 & 010-1019. Based on the geotechnical data obtained, engineering properties of the subsurface soils were determined with design and construction recommendations being provided for the project.

Exhibit 1: Project Location Map

2.0 Existing and Proposed Structure Information

Existing Structure (SN 010-0018 & 010-0019)

Based on information from the Bridge Condition Report (prepared by BFW, dated June 30, 2014), the existing structures were originally constructed in 1965 as four-span rolled steel beam structures with pin and link systems in the end spans. The abutments are open stub on concrete piles. The four column reinforced concrete piers with crash walls are supported on spread footings.

In 1989, the superstructure of each structure was replaced with rolled steel W36 beams composite in the positive moment regions only. The north fascia beam of the north bridge and south fascia beam of the south bridge is flared to carry the flared deck on each structure. The wingwalls were reconstructed, and the seat elevations were adjusted with concrete extensions. The overall length of the structures is 261'-2" back to back of abutments; the width ranges from 53'-3" to 57'-6.5" out to out; the structures have a right skew of 6°-45'-27".

Proposed Structure (SN 010-1018 & 010-1019)

Based on the preliminary TS&L, the I-74 over I-57 structures (SN 010-1018 & SN 010-1019) will consist of two-span bridges, each supported at the midpoint by a six-column hammerhead style pier with pile-supported concrete abutments at each end. The bridge decks will be supported by 54" web plate girders, consisting of an 8" thick slab. Total length of each structure will be 275'-0" back to back abutments. Total width of each structure will range from 69'-3¹/₄" to 74'-8³/₄" back to back of edge barriers. The new structures will mirror the existing right skew of 6°-45'-11". The existing bridges will be replaced over a staged construction effort.

3.0 Existing Site Conditions

The locations of the proposed bridge structures extend I-74 across I-57, replacing existing structures SN 010-0018 & SN 010-0019. Existing site conditions include existing interstate roadways and grassy medians for both I-57 and I-74. Elevations range from 761.3' - 762.5' along the I-57 median and 783.74' - 784.84' near the I-74 bridge abutments.

3.1 Regional Geology

According to the Illinois State Geological Survey, "Bedrock Geology of Illinois" map, the site and surrounding area is situated in the Illinois Basin and is underlain by the Pennsylvanian-aged Tradewater Formation. The Illinois Basin is a Paleozoic depositional and structural basin centered in and underlying most of the state of Illinois. An Illinois Basin study reveals that the Tradewater Formation is composed of 70 to 80 percent shale

and siltstone, 20 to 30 percent sandstone, and generally less than 5 percent coal and limestone. The Tradewater Formation is overlain by the Wedron Group, which is composed of mostly glacial till (an unsorted mixture of clay, silt, sand, and gravel) in broad ridges (last glaciation), and forms end moraines. The Wedron Group is finally capped by the Peoria and Roxana Silts, which are composed of windblown silt (loess) generally thicker than 20 feet blankets upland surfaces in these areas.

4.0 Subsurface Exploration and Generalized Subsurface Conditions

This section describes the subsurface exploration program and laboratory testing program completed as part of this Structure Geotechnical Report (SGR). The locations and subsurface data were provided by McCleary Engineering and were completed based on field conditions and accessibility. Therefore, no site observations have been made by BFW relative to existing conditions of the structure, roadway or of subsurface sample conditions. The locations of the soil borings are shown on the Boring Location Map located in Appendix A and were plotted based on location data obtained by Midland Engineering. The subsurface exploration program was performed in accordance with applicable IDOT geotechnical manuals and procedures.

4.1 Subsurface Exploration

The site subsurface exploration was conducted from February 6 through February 11, 2015 and included advancing one (1) standard penetration test (SPT) boring within the vicinity of the proposed abutment locations (abutment borings for each structure were combined) and one (1) SPT boring within the vicinity of each midspan pier location. The locations of the soil borings are shown on the **Boring Location Map** provided in Appendix A.

Boring ID	Location	Station	Offset	Depth (feet)	Surface Elevation (feet)
B-1/4	West Abutment	1060+08	2 LT	75	784.84
B-2/3	East Abutment	1063+03.80	3 LT	75	783.74
B-32	N. Pier I-74 over I-57	1061+31	95 LT	75	761.30
B-33	S. Pier I-74 over I-57	1061+45	76 RT	75	762.50

 Table 1 – Summary of Subsurface Exploration I-74 over I-57

The soil borings were drilled using a track mounted drill rig. All of the borings were drilled using 3¹/₄ - inch I.D. hollow stem augers. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5 foot intervals to a minimum depth of 20 feet below existing grade and 5 foot intervals thereafter. McCleary Engineering field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval, and were placed in jars and returned to the laboratory for further testing and evaluation.

4.2 Laboratory Testing

A field and laboratory testing program was undertaken by McCleary Engineering to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge. The following laboratory tests were performed on representative soil samples:

The following laboratory tests were performed on representative soil samples:

- Moisture content ASTM D2216 / AASHTO T-265
- RIMAC Compression Test IDOT Method
- Standard Penetration Test (SPT) and Split-Barrel Sampling ASTM D1586 / T-206

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (1999) and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO classification system. The results of the field and laboratory testing are shown on the Soil Boring Logs located in Appendix C.

4.3 Subsurface Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed improvements. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the Soil Boring Logs located in Appendix C and are shown graphically in the Subsurface Profiles located in Appendix D. The soil boring logs provide specific soil conditions encountered at each soil boring location. The soil boring logs include soil descriptions, stratifications, penetration resistance, elevations, location of the samples and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are

visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations, and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Subsurface information was obtained during a geotechnical investigation conducted over the entire proposed I-57 / I-74 interchange modifications. Borings B-1/4, B-2/3, B-32, and B-33 were advanced in support of proposed I-74 over I-57 Structures (SN#010-1018/19) from February 6 through February 11, 2015 along the proposed roadway alignments. Borings 1 and 4 along with borings B-2 and B-3 were originally intended as separate abutment borings but were combined due to budget constraints.

Bridge Abutment Locations

Boring **B-1/4** was advanced between the proposed west abutments, located at Station 1060+08 (Elev. 784.30'). Originally planned to be two borings, boring **B-1/4** location was a field compromise due to project budget constraints. The boring was advanced in the median of I-74 with approximately 6 inches of topsoil at the surface. The soil profile underlying the topsoil in boring **B-1/4** is described as brown to dark brown, medium to very stiff, silty clay loam, which extends to approximately 22.5 feet deep (Elev. 762.34'), where the material transitions to a light brown very loose clayey sand. The upper silty clay loam had SPT N-values in the range of 13 to 18 and an unconfined compressive strength (Qu) from 1.9 to 3.5. The clayey sand continues with depth to approximately 27 feet deep (Elev. 757.84') where the soil transitions to a very stiff gray silty clay loam to till. The silty clay till soils continued to boring completion depth of 75 feet deep (Elev. 709.84') and exhibited SPT N-values in the range of 15 to 38 and unconfined compressive strengths (Qu) from 1.08 to 3.30.

Boring **B-2/3** was advanced between the proposed east abutments, located at Station 1063+03.80 (Elev. 783.74'). Originally planned to be two separate borings, boring **B-2/3** location was a field compromise due to project budget constraints. The boring was advanced in the median of I-74 with approximately 8 inches of topsoil at the surface. The soil profile underlying the topsoil in boring **B-2/3** is described as a fill material composed of dark brown to brownish gray silty clay, very stiff, with some limestone aggregate fragments, extending down to approximately 22.5 feet deep (Elev. 761.24'), where the material transitions to a brown/gray, stiff to very stiff silty clay. The upper soils had SPT N-values in the range of 12 to 23 and unconfined compressive strength (Qu) from 1.15 to 5.56. The silty clay continues deeper to approximately 32 feet deep (Elev. 751.74') where the soil changes to a gray hard silty clay loam till. The till extended to a depth of approximately 44 feet deep (Elev. 739.74') where the material transitioned into a gray, medium to coarse loose clean sand. The sand continues with depth to approximately 47.5 feet deep (Elev. 736.24') where the soil changes to a gray silty loam till, medium dense. The till continues to boring

completion depths of 75 feet deep (Elev. 708.74'). The silty clay till soils had SPT N-values in the range of 11 to 26 and an unconfined compressive strength (Qu) from 0.99 to 3.6.

Pier Boring Locations

Borings **B-32 and B-33** were advanced near the proposed mid-span pier locations, Stations 1061+31 and 1061+45, respectively. In general, each boring was covered with approximately 8" to 2.5 feet of topsoil. Below the topsoil, a brown to gray silty clay to silty clay loam was encountered in each of the soil borings to a depth of 3 - 13 feet deep (Elev. 758.30' - 749.50'). The upper silty clay had SPT N-values ranging from 3 to 17 and unconfined compressive strengths (Qu) from 1.5 to 2.7. Below the silty clay and silty clay loams and silty clay loam till was encountered in each of the borings, with the exception of boring B-32, a very loose gray fine – medium sand layer was observed between approximately 26.5' and 39.5' (Elev. 734.80' – 721.80'). The silty clay loam till extended to boring completion depths of 75 feet deep (Elev. 686.30' – 687.50'). The silty clay loam till exhibited SPT N-values ranging from 7 to 46 and unconfined compressive strengths (Qu) from 1.4 to 3.7.

4.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed.

Groundwater was identified in each boring as follows:

Boring	Groundwater Elevation (At time of drilling)	Groundwater Elevation (@ boring completion)	
B-1/4 (West Abut)	754.8		
B-32 (North Pier)	726.3		
B-33 (South Pier)	Dry	Dry	
B-2/3 (East Abut)	760.7		

Table 2 – Groundwater Elevations

No 24-hour groundwater readings were noted. No streambed elevations or surface water elevations were noted.

Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported.

5.0 Geotechnical Evaluations

The section provides geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, laboratory testing, and geotechnical analysis.

5.1 Derivation of Soil Parameters for Design

Unit weights, friction angles and shear strength parameters were estimated using soil shear strength values and standard penetration test (SPT) using published correlations for N values results. **Table 3** - presents generalized soil parameters to be used based for designs on the laboratory and in-situ testing data:

		In situ	Undrained		Drained	
Approximate Depth / Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ (degrees)	Cohesion c (psf)	Friction Angle Φ (degrees)
761' to 784'* (*approx. surface elev. at approaches)	Silty Clay Loam/Silty Clay (Fill)	115	2400	0	150	28
734' to 762'* (*approx. surface elev. near center piers)	Silty Clay Till	120	2,100	0	110	28

Table 3 – General Summary of Soil Parameters

5.2 Settlement

Western and Eastern Approach Slabs / Abutments

The new approach slabs for both bridges will be supported by new engineered fill. It is anticipated that approximately 2.6 feet (at the west abutment) and 2.3 feet (at the east) will be placed along the new bridge approaches. To accommodate the proposed increase in approach and abutment heights, the abutment slopes will need to be regraded.

The design grading shows that the proposed abutment slope will be a 2H:1V. Based on preliminary settlement calculations, the increase in stress due to the increase in fill would produce only minor settlements in the range of less than 0.4-inch near the west and east abutments and should not adversely affect the approach pavements. Therefore, the anticipated settlement of the abutments due to the regarding activities is considered to be negligible.

5.3 Slope Stability – Bridge Abutments

The proposed construction of I-74 over I-57 involves the removal of the existing dual structures and the replacement of two new bridges with new abutments with concrete end slopes. The proposed abutments are integral with endslopes at 2 horizontal to 1 vertical (2H:1V). Slope stability of the bridge abutments was evaluated using a slope stability analysis software: *GSTABL7 with STEDwin*.

The proposed side slopes were analyzed based on the grading and the soils encountered during subsurface exploration. Three analyses were evaluated using the Bishop and Janbu analyses methods for the proposed slope geometry: end-of-construction (short term - undrained), long-term (drained) and a design seismic event. The analyses were performed using the soil parameters in Table 3 above. A critical factor of safety (FOS) was calculated for each condition. According to the current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

End-of-construction conditions was modeled using full cohesion with a friction angle of 0 degrees. Nominal values for cohesion were used with full friction angle to model the long-term and seismic conditions to analyze the condition where pore water pressure has dissipated. The results of the analysis are shown below in Table 4.

Based on the analysis performed, the proposed slopes meet the minimum required factor of safety of 1.5 (end-of-construction, long-term) and 1.0 (seismic).

Boring Location	Slope	Calculated Critical FOS			
Borning Location	Slope	End-of-Construction	Long Term	Seismic	
B-1/4, West Abut	2H:1V	2.9	1.9	1.5	
B-2/3, East Abut	2H:1V	2.9	1.9	1.5	

 Table 4 – Stability Analysis Results – Bridge Abutments

5.4 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRDF Bride Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT.

According to Table 3.10.6-1 "Seismic Performance Zones" (SPZ) of the AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 7th Edition, 2014, with 2015 Interim Revisions, the site is most accurately described as (SPZ)=1 ($S_{D1} \leq 0.15g$).

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers is anticipated to occur.

The following Seismic Coefficients should be used for design:

 S_s =0.146 g, F_a =1.60; therefore Design Spectral Accelerations at 0.2 sec, (S_{Ds}) =0.233g S_1 =0.056 g, F_v =2.40; therefore Design Spectral Accelerations at 1.0 sec, (S_{D1}) =0.135g

Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.234 g
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.135 g
Soil Site Class	D

 Table 5 – Seismic Coefficients Summary Table

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers is anticipated to occur.

5.5 Scour

The proposed dual bridge structures carrying I-74 will cross over I-57 and no waterways are in the vicinity of the proposed project; therefore, scour will not be a concern for this project.

5.6 Mining Activity

Based on a review of the Illinois State Geological Survey's on-line collection of County Coal Maps and Directories, the proposed structure is not located over a mine or mined out area.

5.7 Liquefaction

Based on the AGMU Memo 10.1 – Liquefaction Analysis Seismic Performance Zones 3 and 4 requires liquefaction analysis, as well as, SPZ 2 with a Peak Seismic Ground Surface Acceleration, As equal to or greater than 0.15. The subject site is in SPZ 1 with a A_s less than 0.15. Therefore, liquefaction is not considered as a reduction for the pile design capacity or other foundation considerations included herein.

5.8 Approach Slabs

Based on information from the structural engineer, the approach slabs are 30 feet in length and will be precast. The approach slabs will bear on the abutment on one side and an approach slab concrete pad on the other end. In accordance with the IDOT Bridge Manual, BFW evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. With proper compaction of the approach subgrades, the bearing capacity and settlement requirements of the IDOT Bridge manual will be satisfied.

6.0 Foundation Type Evaluation and Design Recommendations

6.1 Foundation Type Feasibility

Based on the preliminary TS&L, the proposed dual structures (SN 010-1018 & 010-1019), Station 1061+40.60 will be constructed of 54" web plate girders (composite full length) on integral abutments with an estimated abutment length of 80'. The superstructure will consist skew alignment with back to back abutment distances of 275'-0". Abutments will bear on single row of vertical steel piles. Two new 30 feet long precast bridge approach slabs will be constructed on either end of the bridge.

For this project, the IDOT BBS requested that the proposed structures be based on an upcoming Supplement and pile selection chart (located in appendix) to the 2012 IDOT Integral Abutment Bridge policy which will allow the use of Metal Shell Piles with Integral Abutments. Based on IDOT BBS request the use of Metal Shell Piles is preferred at this location.

6.2 Driven Pile Supported Foundations

Piles considered for this site include HP-piles and metal shell piles. However, the use of metal shell piles is preferred whenever possible based on IDOT preference.

The designer should be aware that although H-piles are feasible, there are concerns with using H-Piles for some of the following reasons. 1) Friction H-piles are notorious for being the most difficult pile to accurately estimate the length at which bearing will be obtained during construction, 2) the estimated H-pile lengths provided within the SGR extend beyond the depths of the borings which make the pile length estimates more subject to error, 3) the borings were terminated per department policy, however; no indication of either a hard layer, which either crush a shell pile or adequate end bearing layer (such as hard pan or bedrock that would stop an H-pile was encountered, 4) H-piles are highly subject to being driven substantially longer than the estimated pile length. When this occurs in the field the equipment and crew are on hold until additional piling can be located, shipped and spliced, typically resulting in project delays and extra costs for all the splices, extra pile and working days. 5) Metal shell piles are IDOT Foundation and Geotechnical Unit's preferred foundation choice for the abutments because the pile lengths will be substantially shorter in comparison to HP-piles.

The Modified IDOT static method Excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. The factored resistance includes reduction for the geotechnical resistance of 0.55 for the pile installation. Based on the results of the subsurface investigation no geotechnical losses due to down drag or liquefaction were included in the axial pile capacity calculations. The anticipated factored structural loadings were obtained from the structural engineer and are provided in Table 6 on the following page.

Tables 7, 8, 9, and 10 summarize the estimated pile lengths at various axial resistances for metal shell piles and HP-piles various sizes piles for the <u>integral</u> abutments for western and eastern abutments and for the center piers for the westbound and eastbound lanes. The complete IDOT Pile Design Tables for each substructure are included in Appendix E.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assists the contractor in selecting a proper hammer size. The Factored Resistance Available (RF) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loads.

The pile cutoff elevations used for analysis were Elev. 779.94 for both eastbound / westbound lanes west abutments and Elev. 778.82 and Elev. 778.86 for eastbound and westbound lanes for the east abutment, respectively. The pile cutoff elevation included a 2 feet embedment into the integral abutment as required by the Bridge Manual.

The presence of gravels and cobbles was noted in the soil boring logs below elevations of 753 in Boring, B-1/4. Therefore, pile shoes are recommended to be used for both metal shell and HP piles due to presence of cobbles within the general area.

Due to the differences in soil consistency between the soil test borings, one test pile should be advanced at each separate abutment locations and one test pile at both center pier locations. A test pile is performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. This is also the time in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

6.3 Shallow Foundations

Based on the soils encountered and the amount of embankment fill, shallow foundations are not a feasible option for the proposed substructures of the bridge. It is anticipated that shallow foundations designed for the loads provided will undergo settlement and therefore will not be a feasible option and are therefore not discussed in this report.

Design Capacity Limitations

There are no downdrag, liquefaction, scour, or settlement issues at this structure that would result in the loss of capacity of the piling. Therefore, no design capacity limitations are necessary.

6.4 Lateral Load Resistance

Section 3.10.1.10 of the 2012 IDOT Bridge manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Based on information provided by the structural engineer the lateral loads were anticipated to be <u>less than 3 kips</u>.

6.5 Wingwall Foundation Recommendations

Based on information provided by the structural engineer and the preliminary TS&L the wing walls for the integral abutment option will be cantilever in design and will not rely on soil bearing.

Table 6: Structural Loadings

SUMMARY OF REACTIONS, Fy (kips):

	DC1	DC2	DW	*LL
W. Abut.	516.2	68.4	175.9	125.8
Pier 1	1937.9	237.0	609.2	155.0
Pier 2	0.0	0.0	0.0	0.0
Pier 3	0.0	0.0	0.0	0.0
Pier 4	0.0	0.0	0.0	0.0
E. Abut.	501.6	65.9	169.2	125.3

*One lane loaded (from CONSPAN)

Total Substructure Weight

	DC1
W. Abut.	342.83
Pier 1	752
Pier 2	0
Pier 3	0
Pier 4	0
E. Abut.	342.83

Approach Slab Reaction = 217.5 kips

Load Factors	DC max	DW max	LL
Strength I	1.25	1.50	1.75

STRENGTH I Loads, Fy (kips):

		# of Lane	STRENGTUL		
	1	2	3	4	SIRENGIHI (max)
*MPF, m	1.20	1.00	0.85	0.65	>
W. Abut.	1959.3	2135.4	2256.6	2267.6	2268
Pier 1	4898.0	5115.1	5264.3	5277.9	5278
Pier 2	0.0	0.0	0.0	0.0	0
Pier 3	0.0	0.0	0.0	0.0	0
Pier 4	0.0	0.0	0.0	0.0	0
E. Abut.	1926.6	2102.0	2222.6	2233.6	2234

* Multiple Presence Factor (LRFD Table 3.6.1.1.2-1)

7.0 Construction Considerations

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2015) and the Supplemental Specifications and Recurring Special Provisions (2015) and-or its successor specifications. Any deviation from the requirements in the manuals above should be approved by IDOT.

7.1 Groundwater Management

Based on the depth of groundwater observed in the borings, significant groundwater management is not anticipated for bridge construction. The contactor should control groundwater and surface water infiltration to provide construction in dry condition. Temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment could be used to divert groundwater if significant seepage is encountered during construction. If water seepage occurs during footing or where wet conditions are encountered such that the water cannot be removed with conventional pumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation.

The CA-7 stone should be placed to 12 inches above the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footing should be backfilled using approved structural fill.

7.2 Temporary Sheeting and Soil Retention

The preliminary TS&L plans indicate that the construction of the proposed structures will require complete removal of the existing structure and abutments. Based on information provided by the structural engineer, the construction for the proposed structure will be phased maintaining one lane of traffic in each direction.

Pile Capacity Tables (Tables 7 & 8) (54-Inch Web Plate Girder – Integral Abutment)

Table 7 – West Abutment						
Piling Driven at West Abutment (B-1/4 data)						
Nominal	Factored	Estimated Pile				
Required	Resistance	Length				
Bearing	Available	(Ft)				
(Kips)	(Kips)	(
Metal Shell 12" Φ w/0.25 walls						
280	154	51				
300	165	54				
318	175	56				
330	181	59				
353*	194*	61				
Meta	al Shell 14" Φ	w/0.25" walls				
330	182	51				
355	195	54				
375	206	56				
388	214	59				
413*	227*	61				
Met	al Shell 14" Φ	w/0.312 walls				
452	249	70				
466	256	73				
480	264	75				
493	271	78				
	HP 12 x	: 53				
330	182	51				
355	195	54				
375	206	56				
338	214	59				
405	223	61				
	HP 12 x	: 74				
297	163	61				
304	167	64				
315	173	69				
326	179	70				
336	185	73				
	HP 14 x	73				
416	229	78				
428	235	80				
439	241	83				
450	248	85				
461	254	88				

Table 8 – East Abutment

	Piling Driven at South Abutment (B-2\3data)							
	Nominal	Factored	Estimated Pile					
	Required	Resistance	Length					
	Bearing	Available	(Ft)					
	(Kips)	(Kips)	(10)					
	Metal Shell 12" Φ w/0.25 walls							
	268	147	46					
	299	164	49					
	320	176	51					
	340	187	54					
	353*	194*	56					
	Meta	l Shell 14" Φ v	w/0.25" walls					
	314	173	46					
	354	195	49					
	380	209	51					
	402	221	54					
	413*	227*	56					
	Meta	ll Shell 14" Φ	w/0.312 walls					
	449	247	59					
	472	260	61					
	498	274	64					
	513*	282*	66					
		HP 12 x	53					
	345	190	61					
	364	200	64					
	381	210	66					
	387	213	69					
	402	221	70					
		HP 12 x	74					
	412	227	70					
	428	235	73					
	444	244	75					
	461	253	78					
	477	262	80					
		HP 14 x	73					
ĺ	486	268	70					
ĺ	505	278	73					
	524	288	75					
	543	299	78					
*	562	309	80					
^_ L								

Maximum Nominal Required Bearing

Pile Capacity Tables (Tables 9 & 10) (54-Inch Web Plate Girder)

Table 9 – North Center Pier / Westbound Lanes Lanes Table 10 – South Center Pier / Eastbound

Diling Driver at Conton Dion (P. 22 data)						
Naming Driven at Center Fler (B-52 data)						
Poquinal	Pactored	Estimated Pile				
Bearing	Available	Length				
(Kins)	(Kine)	(Ft)				
(Kips) Mot	(hips)	w/0.25 walls				
201 160 45						
308	170	43				
322	170	50				
338	186	52				
353*	194*	55				
Meta	al Shell 14" Φ	w/0.25" walls				
344	189	45				
364	200	47				
380	209	50				
398	219	52				
413*	227*	55				
Met	al Shell 14" Φ	w/0.312 walls				
456	251	65				
464	255	67				
484	266	71				
	HP 12 x	53				
319	175	71				
326	179	74				
333	183	76				
340	187	79				
347	191	81				
	HP 12 x	. 74				
326	179	71				
333	183	74				
340	187	76				
347	191	79				
354	195	81				
	HP 14 x	73				
380	209	71				
389	214	74				
397	218	76				
405	223	79				
414	228	81				

Diling D	riven at Cente	pr Dier (B 33 data)
Nominal	Factored	er Fier (D-55 data)
Required	Resistance	Estimated Pile
Bearing	Available	Length
(Kips)	(Kips)	(Ft)
Meta	al Shell 12" Φ	w/0.25 walls
288	158	46
302	166	49
315	173	51
328	181	54
353*	194*	56
Meta	ll Shell 14" Φ	w/0.25" walls
339	187	46
355	195	49
371	204	51
386	212	54
413*	227*	56
Meta	ll Shell 14" Φ	w/0.312 walls
460	253	66
477	263	69
485	267	70
	HP 12 x	53
375	206	78
385	212	80
395	217	83
406	223	85
416	229	88
	HP 12 x	74
394	217	80
404	222	83
415	228	85
425	234	88
435	239	90
	HP 14 x	73
461	254	80
473	260	83
486	267	85
498	274	88
510	280	90

Maximum Nominal Required Bearing

*_

Structure Geotechnical Report F.A.I. RTE. 74 over F.A.I. RTE. 57 (Stat 1061+40.60) Proposed Structure Number: 010-1018 & 010-1019 Champaign County, Illinois

Temporary Sheeting and Soil Retention

In evaluating the use of temporary cantilever sheet piling, a maximum of about 11 feet of retaining height during stage construction of both structures. Using subsurface soils information encountered and on preliminary calculations for the depth of embedment as per IDOT Bridge Manual using the "Design Guide and Charts for Temporary Cantilever Sheet Piling", approximately embedment depths were determined. Based on the design charts, embedment depths of approximately 8.3 feet for both the western and eastern abutments for both structures were determined. Therefore, simple cantilever sheeting piles appear feasible to be used for both the western and eastern abutments.

8.0 Limitations

This report has been prepared for the exclusive use of the Illinois Department of Transportation and its structural consultant. The recommendations provided in this report are specific to the project described herein, and are based on the information obtained from the soil boring locations within the project limits. The analysis has been performed and the recommendations have been provided in this report are based on subsurface conditions determined at the location of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extend of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations provided herein in light of the new conditions.

Appendix A

Soil Boring Location Map

Appendix B Preliminary TS&L

Appendix C

Subsurface Boring Logs

Appendix D Boring Profile Sheet

Appendix D Pile Capacity Tables

Appendix E

Integral Abutment Pile Selection Chart

1.0 **Project Description**

The purpose of this geotechnical study is to explore the existing subsurface conditions present at the existing structure location (SN 010-0018 & 010-0019) (Station 1061+40.60) carrying I-74 over I-57 in Section 10R, Township 20 North, Range 8 East of the 3rd PM in the city of Champaign, Champaign County, Illinois. These structures will be replaced by proposed structures SN 010-1018 & 010-1019. Based on the geotechnical data obtained, engineering properties of the subsurface soils were determined with design and construction recommendations being provided for the project.

Exhibit 1: Project Location Map

2.0 Existing and Proposed Structure Information

Existing Structure (SN 010-0018 & 010-0019)

Based on information from the Bridge Condition Report (prepared by BFW, dated June 30, 2014), the existing structures were originally constructed in 1965 as four-span rolled steel beam structures with pin and link systems in the end spans. The abutments are open stub on concrete piles. The four column reinforced concrete piers with crash walls are supported on spread footings.

In 1989, the superstructure of each structure was replaced with rolled steel W36 beams composite in the positive moment regions only. The north fascia beam of the north bridge and south fascia beam of the south bridge is flared to carry the flared deck on each structure. The wingwalls were reconstructed, and the seat elevations were adjusted with concrete extensions. The overall length of the structures is 261'-2" back to back of abutments; the width ranges from 53'-3" to 57'-6.5" out to out; the structures have a right skew of 6°-45'-27".

Proposed Structure (SN 010-1018 & 010-1019)

Based on the preliminary TS&L, the I-74 over I-57 structures (SN 010-1018 & SN 010-1019) will consist of two-span bridges, each supported at the midpoint by a six-column hammerhead style pier with pile-supported concrete abutments at each end. The bridge decks will be supported by 54" web plate girders, consisting of an 8" thick slab. Total length of each structure will be 275'-0" back to back abutments. Total width of each structure will range from 69'-3¹/₄" to 74'-8³/₄" back to back of edge barriers. The new structures will mirror the existing right skew of 6°-45'-11". The existing bridges will be replaced over a staged construction effort.

3.0 Existing Site Conditions

The locations of the proposed bridge structures extend I-74 across I-57, replacing existing structures SN 010-0018 & SN 010-0019. Existing site conditions include existing interstate roadways and grassy medians for both I-57 and I-74. Elevations range from 761.3' – 762.5' along the I-57 median and 783.74' – 784.84' near the I-74 bridge abutments.

3.1 Regional Geology

According to the Illinois State Geological Survey, "Bedrock Geology of Illinois" map, the site and surrounding area is situated in the Illinois Basin and is underlain by the Pennsylvanian-aged Tradewater Formation. The Illinois Basin is a Paleozoic depositional and structural basin centered in and underlying most of the state of Illinois. An Illinois Basin study reveals that the Tradewater Formation is composed of 70 to 80 percent shale

and siltstone, 20 to 30 percent sandstone, and generally less than 5 percent coal and limestone. The Tradewater Formation is overlain by the Wedron Group, which is composed of mostly glacial till (an unsorted mixture of clay, silt, sand, and gravel) in broad ridges (last glaciation), and forms end moraines. The Wedron Group is finally capped by the Peoria and Roxana Silts, which are composed of windblown silt (loess) generally thicker than 20 feet blankets upland surfaces in these areas.

4.0 Subsurface Exploration and Generalized Subsurface Conditions

This section describes the subsurface exploration program and laboratory testing program completed as part of this Structure Geotechnical Report (SGR). The locations and subsurface data were provided by McCleary Engineering and were completed based on field conditions and accessibility. Therefore, no site observations have been made by BFW relative to existing conditions of the structure, roadway or of subsurface sample conditions. The locations of the soil borings are shown on the Boring Location Map located in Appendix A and were plotted based on location data obtained by Midland Engineering. The subsurface exploration program was performed in accordance with applicable IDOT geotechnical manuals and procedures.

4.1 Subsurface Exploration

The site subsurface exploration was conducted from February 6 through February 11, 2015 and included advancing one (1) standard penetration test (SPT) boring within the vicinity of the proposed abutment locations (abutment borings for each structure were combined) and one (1) SPT boring within the vicinity of each midspan pier location. The locations of the soil borings are shown on the **Boring Location Map** provided in Appendix A.

Boring ID	Location	Station	Offset	Depth (feet)	Surface Elevation (feet)
B-1/4	West Abutment	1060+08	2 LT	75	784.84
B-2/3	East Abutment	1063+03.80	3 LT	75	783.74
B-32	N. Pier I-74 over I-57	1061+31	95 LT	75	761.30
B-33	S. Pier I-74 over I-57	1061+45	76 RT	75	762.50

 Table 1 – Summary of Subsurface Exploration I-74 over I-57

The soil borings were drilled using a track mounted drill rig. All of the borings were drilled using 3¹/₄ - inch I.D. hollow stem augers. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5 foot intervals to a minimum depth of 20 feet below existing grade and 5 foot intervals thereafter. McCleary Engineering field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval, and were placed in jars and returned to the laboratory for further testing and evaluation.

4.2 Laboratory Testing

A field and laboratory testing program was undertaken by McCleary Engineering to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge. The following laboratory tests were performed on representative soil samples:

The following laboratory tests were performed on representative soil samples:

- Moisture content ASTM D2216 / AASHTO T-265
- RIMAC Compression Test IDOT Method
- Standard Penetration Test (SPT) and Split-Barrel Sampling ASTM D1586 / T-206

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (1999) and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO classification system. The results of the field and laboratory testing are shown on the Soil Boring Logs located in Appendix C.

4.3 Subsurface Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed improvements. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the Soil Boring Logs located in Appendix C and are shown graphically in the Subsurface Profiles located in Appendix D. The soil boring logs provide specific soil conditions encountered at each soil boring location. The soil boring logs include soil descriptions, stratifications, penetration resistance, elevations, location of the samples and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions

only at the actual boring locations, and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Subsurface information was obtained during a geotechnical investigation conducted over the entire proposed I-57 / I-74 interchange modifications. Borings B-1/4, B-2/3, B-32, and B-33 were advanced in support of proposed I-74 over I-57 Structures (SN#010-1018/19) from February 6 through February 11, 2015 along the proposed roadway alignments. Borings 1 and 4 along with borings B-2 and B-3 were originally intended as separate abutment borings but were combined due to budget constraints.

Bridge Abutment Locations

Boring **B-1/4** was advanced between the proposed west abutments, located at Station 1060+08 (Elev. 784.30'). Originally planned to be two borings, boring **B-1/4** location was a field compromise due to project budget constraints. The boring was advanced in the median of I-74 with approximately 6 inches of topsoil at the surface. The soil profile underlying the topsoil in boring **B-1/4** is described as brown to dark brown, medium to very stiff, silty clay loam, which extends to approximately 22.5 feet deep (Elev. 762.34'), where the material transitions to a light brown very loose clayey sand. The upper silty clay loam had SPT N-values in the range of 13 to 18 and an unconfined compressive strength (Qu) from 1.9 to 3.5. The clayey sand continues with depth to approximately 27 feet deep (Elev. 757.84') where the soil transitions to a very stiff gray silty clay loam to till. The silty clay till soils continued to boring completion depth of 75 feet deep (Elev. 709.84') and exhibited SPT N-values in the range of 15 to 38 and unconfined compressive strengths (Qu) from 1.08 to 3.30.

Boring **B-2/3** was advanced between the proposed east abutments, located at Station 1063+03.80 (Elev. 783.74'). Originally planned to be two separate borings, boring **B-2/3** location was a field compromise due to project budget constraints. The boring was advanced in the median of I-74 with approximately 8 inches of topsoil at the surface. The soil profile underlying the topsoil in boring **B-2/3** is described as a fill material composed of dark brown to brownish gray silty clay, very stiff, with some limestone aggregate fragments, extending down to approximately 22.5 feet deep (Elev. 761.24'), where the material transitions to a brown/gray, stiff to very stiff silty clay. The upper soils had SPT N-values in the range of 12 to 23 and unconfined compressive strength (Qu) from 1.15 to 5.56. The silty clay continues deeper to approximately 32 feet deep (Elev. 751.74') where the soil changes to a gray hard silty clay loam till. The till extended to a depth of approximately 44 feet deep (Elev. 739.74') where the material transitioned into a gray, medium to coarse loose clean sand. The sand continues with depth to approximately 47.5 feet deep (Elev. 736.24') where the soil changes to a gray silty loam till, medium dense. The till continues to boring

completion depths of 75 feet deep (Elev. 708.74'). The silty clay till soils had SPT N-values in the range of 11 to 26 and an unconfined compressive strength (Qu) from 0.99 to 3.6.

Pier Boring Locations

Borings **B-32 and B-33** were advanced near the proposed mid-span pier locations, Stations 1061+31 and 1061+45, respectively. In general, each boring was covered with approximately 8" to 2.5 feet of topsoil. Below the topsoil, a brown to gray silty clay to silty clay loam was encountered in each of the soil borings to a depth of 3 - 13 feet deep (Elev. 758.30' - 749.50'). The upper silty clay had SPT N-values ranging from 3 to 17 and unconfined compressive strengths (Qu) from 1.5 to 2.7. Below the silty clay and silty clay loams and silty clay loam till was encountered in each of the borings, with the exception of boring B-32, a very loose gray fine – medium sand layer was observed between approximately 26.5' and 39.5' (Elev. 734.80' – 721.80'). The silty clay loam till extended to boring completion depths of 75 feet deep (Elev. 686.30' – 687.50'). The silty clay loam till exhibited SPT N-values ranging from 7 to 46 and unconfined compressive strengths (Qu) from 1.4 to 3.7.

4.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed.

Groundwater was identified in each boring as follows:

Boring	Groundwater Elevation (At time of drilling)	Groundwater Elevation (@ boring completion)
B-1/4 (West Abut)	754.8	
B-32 (North Pier)	726.3	
B-33 (South Pier)	Dry	Dry
B-2/3 (East Abut)	760.7	

Table 2 – Groundwater Elevations

No 24-hour groundwater readings were noted. No streambed elevations or surface water elevations were noted.

Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported.

5.0 Geotechnical Evaluations

The section provides geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, laboratory testing, and geotechnical analysis.

5.1 Derivation of Soil Parameters for Design

Unit weights, friction angles and shear strength parameters were estimated using soil shear strength values and standard penetration test (SPT) using published correlations for N values results. **Table 3** - presents generalized soil parameters to be used based for designs on the laboratory and in-situ testing data:

		In situ	Undrained		Drained	
Approximate Depth / Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ (degrees)	Cohesion c (psf)	Friction Angle Φ (degrees)
761' to 784'* (*approx. surface elev. at approaches)	Silty Clay Loam/Silty Clay (Fill)	115	2400	0	150	28
734' to 762'* (*approx. surface elev. near center piers)	Silty Clay Till	120	2,100	0	110	28

Table 3 – General Summary of Soil Parameters

5.2 Settlement

Western and Eastern Approach Slabs / Abutments

The new approach slabs for both bridges will be supported by new engineered fill. It is anticipated that approximately 2.6 feet (at the west abutment) and 2.3 feet (at the east) will be placed along the new bridge approaches. To accommodate the proposed increase in approach and abutment heights, the abutment slopes will need to be regraded.

The design grading shows that the proposed abutment slope will be a 2H:1V. Based on preliminary settlement calculations, the increase in stress due to the increase in fill would produce only minor settlements in the range of less than 0.4-inch near the west and east abutments and should not adversely affect the approach pavements. Therefore, the anticipated settlement of the abutments due to the regarding activities is considered to be negligible.

5.3 Slope Stability – Bridge Abutments

The proposed construction of I-74 over I-57 involves the removal of the existing dual structures and the replacement of two new bridges with new abutments with concrete end slopes. The proposed abutments are integral with endslopes at 2 horizontal to 1 vertical (2H:1V). Slope stability of the bridge abutments was evaluated using a slope stability analysis software: *GSTABL7 with STEDwin*.

The proposed side slopes were analyzed based on the grading and the soils encountered during subsurface exploration. Three analyses were evaluated using the Bishop and Janbu analyses methods for the proposed slope geometry: end-of-construction (short term - undrained), long-term (drained) and a design seismic event. The analyses were performed using the soil parameters in Table 3 above. A critical factor of safety (FOS) was calculated for each condition. According to the current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

End-of-construction conditions was modeled using full cohesion with a friction angle of 0 degrees. Nominal values for cohesion were used with full friction angle to model the long-term and seismic conditions to analyze the condition where pore water pressure has dissipated. The results of the analysis are shown below in Table 4.

Based on the analysis performed, the proposed slopes meet the minimum required factor of safety of 1.5 (end-of-construction, long-term) and 1.0 (seismic).

Boring Location	Slope	Calculated Critical FOS			
Borng Location	Slope	End-of-Construction	Long Term	Seismic	
B-1/4, West Abut	2H:1V	2.9	1.9	1.5	
B-2/3, East Abut	2H:1V	2.9	1.9	1.5	

 Table 4 – Stability Analysis Results – Bridge Abutments

5.4 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRDF Bride Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site Class Determination" Excel spreadsheet provided by IDOT.

Both proposed I-74 over I-57 bridges each have total lengths of 275 feet (back to back abutments). According to Table 3.10.3.1-1 (Site Class Definitions) of the AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 7th Edition, 2014, with 2015 Interim Revisions, the project site soil profile is most accurately described as the AASHTO Soil Site Class D.

According to Table 3.10.6-1 "Seismic Performance Zones" (SPZ) of the AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 7th Edition, 2014, with 2015 Interim Revisions, the site is most accurately described as (SPZ)=1 ($S_{D1} \le 0.15g$).

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers is anticipated to occur.

The following Seismic Coefficients should be used for design:

 S_s =0.146 g, F_a =1.60; therefore Design Spectral Accelerations at 0.2 sec, (S_{Ds}) =0.233g S_1 =0.056 g, F_v =2.40; therefore Design Spectral Accelerations at 1.0 sec, (S_{D1}) =0.135g

Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.234 g
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.135 g
Soil Site Class	D

 Table 5 – Seismic Coefficients Summary Table

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers is anticipated to occur.

5.5 Scour

The proposed dual bridge structures carrying I-74 will cross over I-57 and no waterways are in the vicinity of the proposed project; therefore, scour will not be a concern for this project.

5.6 Mining Activity

Based on a review of the Illinois State Geological Survey's on-line collection of County Coal Maps and Directories, the proposed structure is not located over a mine or mined out area.

5.7 Liquefaction

Based on the AGMU Memo 10.1 - Liquefaction Analysis Seismic Performance Zones 3 and 4 requires liquefaction analysis, as well as, SPZ 2 with a Peak Seismic Ground Surface Acceleration, As equal to or greater than 0.15. The subject site is in SPZ 1 with a A_s less than 0.15. Therefore, liquefaction is not considered as a reduction for the pile design capacity or other foundation considerations included herein.

5.8 Approach Slabs

Based on information from the structural engineer, the approach slabs are 30 feet in length and will be precast. The approach slabs will bear on the abutment on one side and an approach slab concrete pad on the other end. In accordance with the IDOT Bridge Manual, BFW evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. With proper compaction of the approach subgrades, the bearing capacity and settlement requirements of the IDOT Bridge manual will be satisfied.

6.0 Foundation Type Evaluation and Design Recommendations

6.1 Foundation Type Feasibility

Based on the preliminary TS&L, the proposed dual structures (SN 010-1018 & 010-1019), Station 1061+40.60 will be constructed of 54" web plate girders (composite full length) on integral abutments with an estimated abutment length of 80'. The superstructure will consist skew alignment with back to back abutment distances of 275'-0". Abutments will bear on single row of vertical steel piles. Two new 30 feet long precast bridge approach slabs will be constructed on either end of the bridge.

For this project, the IDOT BBS requested that the proposed structures be based on an upcoming Supplement and pile selection chart (located in appendix) to the 2012 IDOT Integral Abutment Bridge policy which will allow the use of Metal Shell Piles with Integral Abutments. Based on IDOT BBS request the use of Metal Shell Piles is preferred at this location.

6.2 Driven Pile Supported Foundations

Piles considered for this site include HP-piles and metal shell piles. However, the use of metal shell piles is preferred whenever possible based on IDOT preference.

The designer should be aware that although H-piles are feasible, there are concerns with using H-Piles for some of the following reasons. 1) Friction H-piles are notorious for being the most difficult pile to accurately estimate the length at which bearing will be obtained during construction, 2) the estimated H-pile lengths provided within the SGR extend beyond the depths of the borings which make the pile length estimates more subject to error, 3) the borings were terminated per department policy, however; no indication of either a hard layer, which either crush a shell pile or adequate end bearing layer (such as hard pan or bedrock that would stop an H-pile was encountered, 4) H-piles are highly subject to being driven substantially longer than the estimated pile length. When this occurs in the field the equipment and crew are on hold until additional piling can be located, shipped and spliced, typically resulting in project delays and extra costs for all the splices, extra pile and working days. 5) Metal shell piles are IDOT Foundation and Geotechnical Unit's preferred foundation choice for the abutments because the pile lengths will be substantially shorter in comparison to HP-piles.

The Modified IDOT static method Excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. The factored resistance includes reduction for the geotechnical resistance of 0.55 for the pile installation. Based on the results of the subsurface investigation no geotechnical losses due to down drag or liquefaction were included in the axial pile capacity calculations. The anticipated factored structural loadings were obtained from the structural engineer and are provided in Table 6 on the following page.

Tables 7, 8, 9, and 10 summarize the estimated pile lengths at various axial resistances for metal shell piles and HP-piles various sizes piles for the <u>integral</u> abutments for western and eastern abutments and for the center piers for the westbound and eastbound lanes. The complete IDOT Pile Design Tables for each substructure are included in Appendix E.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assists the contractor in selecting a proper hammer size. The Factored Resistance Available (RF) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loads.

The pile cutoff elevations used for analysis were Elev. 779.94 for both eastbound / westbound lanes west abutments and Elev. 778.82 and Elev. 778.86 for eastbound and westbound lanes for the east abutment, respectively. The pile cutoff elevation included a 2 feet embedment into the integral abutment as required by the Bridge Manual.

The presence of gravels and cobbles was noted in the soil boring logs below elevations of 753 in Boring, B-1/4. Therefore, pile shoes are recommended to be used for both metal shell and HP piles due to presence of cobbles within the general area.

Due to the differences in soil consistency between the soil test borings, one test pile should be advanced at each separate abutment locations and one test pile at both center pier locations. A test pile is performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. This is also the time in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

6.3 Shallow Foundations

Based on the soils encountered and the amount of embankment fill, shallow foundations are not a feasible option for the proposed substructures of the bridge. It is anticipated that shallow foundations designed for the loads provided will undergo settlement and therefore will not be a feasible option and are therefore not discussed in this report.

Design Capacity Limitations

There are no downdrag, liquefaction, scour, or settlement issues at this structure that would result in the loss of capacity of the piling. Therefore, no design capacity limitations are necessary.

6.4 Lateral Load Resistance

Section 3.10.1.10 of the 2012 IDOT Bridge manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Based on information provided by the structural engineer the lateral loads were anticipated to be <u>less than 3 kips</u>.

6.5 Wingwall Foundation Recommendations

Based on information provided by the structural engineer and the preliminary TS&L the wing walls for the integral abutment option will be cantilever in design and will not rely on soil bearing.

Table 6: Structural Loadings

SUMMARY OF REACTIONS, Fy (kips):

	DC1	DC2	DW	*LL
W. Abut.	516.2	68.4	175.9	125.8
Pier 1	1937.9	237.0	609.2	155.0
Pier 2	0.0	0.0	0.0	0.0
Pier 3	0.0	0.0	0.0	0.0
Pier 4	0.0	0.0	0.0	0.0
E. Abut.	501.6	65.9	169.2	125.3

*One lane loaded (from CONSPAN)

Total Substructure Weight

	DC1
W. Abut.	342.83
Pier 1	752
Pier 2	0
Pier 3	0
Pier 4	0
E. Abut.	342.83

3	Approach Slab Reaction =	217.5	kips
3			

Load Factors	DC max	DW max	LL
Strength I	1.25	1.50	1.75

STRENGTH I Loads, Fy (kips):

		# of Lane	CTDENCTUL/man		
	1	2	3	4	SIRENGIHI (max)
*MPF, m	1.20	1.00	0.85	0.65	> <
W. Abut.	1959.3	2135.4	2256.6	2267.6	2268
Pier 1	4898.0	5115.1	5264.3	5277.9	5278
Pier 2	0.0	0.0	0.0	0.0	0
Pier 3	0.0	0.0	0.0	0.0	0
Pier 4	0.0	0.0	0.0	0.0	0
E. Abut.	1926.6	2102.0	2222.6	2233.6	2234

* Multiple Presence Factor (LRFD Table 3.6.1.1.2-1)

7.0 Construction Considerations

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2015) and the Supplemental Specifications and Recurring Special Provisions (2015) and-or its successor specifications. Any deviation from the requirements in the manuals above should be approved by IDOT.

7.1 Groundwater Management

Based on the depth of groundwater observed in the borings, significant groundwater management is not anticipated for bridge construction. The contactor should control groundwater and surface water infiltration to provide construction in dry condition. Temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment could be used to divert groundwater if significant seepage is encountered during construction. If water seepage occurs during footing or where wet conditions are encountered such that the water cannot be removed with conventional pumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation.

The CA-7 stone should be placed to 12 inches above the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footing should be backfilled using approved structural fill.

7.2 Temporary Sheeting and Soil Retention

The preliminary TS&L plans indicate that the construction of the proposed structures will require complete removal of the existing structure and abutments. Based on information provided by the structural engineer, the construction for the proposed structure will be phased maintaining one lane of traffic in each direction.

Pile Capacity Tables (Tables 7 & 8) (54-Inch Web Plate Girder – Integral Abutment)

Table 7 – West Abutment					
Piling Driven at West Abutment (B-1/4 data)					
Nominal	Factored	Estimated Pile			
Required	Resistance	Length			
Bearing	Available	(Ft)			
(Kips)	(Kips)	(0.05 11			
Met	al Shell 12" Φ	w/0.25 walls			
280	154	51			
300	165	54			
318	175	56			
330	181	59			
353*	194*	61			
Meta	al Shell 14" Φ	w/0.25" walls			
330	182	51			
355	195	54			
375	206	56			
388	214	59			
413*	227*	61			
Meta	al Shell 14" Φ	w/0.312 walls			
452	249	70			
466	256	73			
480	264	75			
493	271	78			
	HP 12 x	53			
330	182	51			
355	195	54			
375	206	56			
338	214	59			
405	223	61			
	HP 12 x	. 74			
297	163	61			
304	167	64			
315	173	69			
326	179	70			
336	185	73			
	HP 14 x	. 73			
416	229	78			
428	235	80			
439	241	83			
450	248	85			
461	254	88			

Table 8 – East Abutment

Piling Driv	en at South Al	butment (B-2\3data)
Nominal	Factored	Estimated B ile
Required	Resistance	Length
Bearing	Available	(Ft)
(Kips)	(Kips)	(1)
Meta	al Shell 12" Φ	w/0.25 walls
268	147	46
299	164	49
320	176	51
340	187	54
353*	194*	56
Meta	ll Shell 14" Φ	w/0.25" walls
314	173	46
354	195	49
380	209	51
402	221	54
413*	227*	56
Meta	ll Shell 14" Φ	w/0.312 walls
449	247	59
472	260	61
498	274	64
513*	282*	66
	HP 12 x	53
345	190	61
364	200	64
381	210	66
387	213	69
402	221	70
	HP 12 x	74
412	227	70
428	235	73
444	244	75
461	253	78
477	262	80
	HP 14 x	73
486	268	70
505	278	73
524	288	75
543	299	78
562	309	80

*- Maximum Nominal Required Bearing

Structure Geotechnical Report F.A.I. RTE. 74 over F.A.I. RTE. 57 (Stat 1061+40.60) Proposed Structure Number: 010-1018 & 010-1019 Champaign County, Illinois

Pile Capacity Tables (Tables 9 & 10) (54-Inch Web Plate Girder)

Table 9 – North Center Pier / Westbound Lanes

Piling D	riven at Cente	er Pier (B-32 data)
Nominal	Factored	Estimated Pile
Required	Resistance	Length
Bearing	Available	(Ft)
(Kips)	(Kips)	()
Met	al Shell 12" Φ	w/0.25 walls
291	160	45
308	170	47
322	177	50
338	186	52
353*	194*	55
Meta	al Shell 14" Φ	w/0.25" walls
344	189	45
364	200	47
380	209	50
398	219	52
413*	227*	55
Met	al Shell 14" Φ	w/0.312 walls
456	251	65
464	255	67
484	266	71
	HP 12 x	x 53
319	175	71
326	179	74
333	183	76
340	187	79
347	191	81
	HP 12 x	74
326	179	71
333	183	74
340	187	76
347	191	79
354	195	81
	HP 14 x	73
380	209	71
389	214	74
397	218	76
405	223	79
414	228	81

	Table 10 –	South	Center	Pier /	Eastbound	Lanes
--	------------	-------	--------	--------	-----------	-------

Piling D	riven at Cente	er Pier (B-33 data)
Nominal	Factored	Estimated Pile
Required	Resistance	Length
Bearing	Available	(Ft)
(Kips)	(Kips)	(1.0)
Meta	al Shell 12" Φ	w/0.25 walls
288	158	46
302	166	49
315	173	51
328	181	54
353*	194*	56
Meta	l Shell 14" Φ	w/0.25" walls
339	187	46
355	195	49
371	204	51
386	212	54
413*	227*	56
Meta	ll Shell 14" Φ	w/0.312 walls
460	253	66
477	263	69
485	267	70
	HP 12 x	53
375	206	78
385	212	80
395	217	83
406	223	85
416	229	88
	HP 12 x	74
394	217	80
404	222	83
415	228	85
425	234	88
435	239	90
	HP 14 x	73
461	254	80
473	260	83
486	267	85
498	274	88
510	280	90

*- Maximum Nominal Required Bearing

Temporary Sheeting and Soil Retention

In evaluating the use of temporary cantilever sheet piling, a maximum of about 11 feet of retaining height during stage construction of both structures. Using subsurface soils information encountered and on preliminary calculations for the depth of embedment as per IDOT Bridge Manual using the "Design Guide and Charts for Temporary Cantilever Sheet Piling", approximately embedment depths were determined. Based on the design charts, embedment depths of approximately 8.3 feet for both the western and eastern abutments for both structures were determined. Therefore, simple cantilever sheeting piles appear feasible to be used for both the western and eastern abutments.

8.0 Limitations

This report has been prepared for the exclusive use of the Illinois Department of Transportation and its structural consultant. The recommendations provided in this report are specific to the project described herein, and are based on the information obtained from the soil boring locations within the project limits. The analysis has been performed and the recommendations have been provided in this report are based on subsurface conditions determined at the location of the borings. This report may not reflect all variations that may occur between boring locations or at some other time, the nature and extend of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations provided herein in light of the new conditions.

Appendix A

Soil Boring Location Map

Appendix B

Preliminary TS&L

Functional Class: Interstate ADT: 32,400 (2013): 49,900 (2040) ADTT: 9,450 (2013); 14,170 (2040) DHV: 2,146 (2040) Design Speed: 75 m.p.h. Posted Speed: 70 m.p.h. Directional Distribution: 50:50

Design Spectral Acceleration at 1.0 sec. (Sp1) = 0.135 g Design Spectral Acceleration at 0.2 sec. (Sps) = 0.234g

GENERAL PLAN & ELEVATION F.A.I. RTE. 74 OVER F.A.I. RTE. 57 SECTION (10-34)BR, BR-1 & (10-5-1)BR-1 STATION 1061+40.60

	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	74	*	CHAMPAIGN		
			CONTRACT	NO. 7	OB38
SHEETS		ILLINOIS FED	AID PROJECT		

Appendix C Subsurface Boring Logs

RCOTE Isinfa Description West Add(174 over 1-37) LOGGE SECTION 10(5-1-RS-1, 14-1.6)R LOCATION . SEC. 34, TWP. 20N, RNG. 8E, 3 PM HAMMER TYPE STRUCT. NO.	D E P T H (ft)	AI B L O W S	UTO U C S Qu (tsf)	M O I S T (%)
SEC TION	D E P T H (ft)	AI B L O W S	UTO U C S Qu (tsf)	M O I S T (%)
COUNTY Champaign DRILLING METHOD HSA HAMMER TYPE STRUCT. NO.	D E P T H (ft)	A B L O W S	UTO U C S Qu (tsf)	M O I S T (%)
STRUCT. NO.	D E P T H (ft)	B L W S	U C S Qu (tsf)	M O I S T (%)
Station	E P T H (ft)	L O W S	C S Qu (tsf)	0 I S T (%)
BORING NO. B-1/4 T W S Qu S Groundwater Elev.: ✓ First Encounter 754.8 ft Offset 2.0ft Left (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) ✓ First Encounter 754.8 ft 6" TOPSOIL 784.84 ft (ft) Ø	т н (ft)	W S	Qu (tsf)	S T (%)
Station 1060+08 n S Cu 1 ∑ First Encounter 754.8 ft Ground Surface Elev. 784.84 ft (ft) (ft)	п (ft) —	.	(tsf)	(%)
Ground Surface Elev. 784.84 ft (ft) (tsf) (%) ¥ After Hrs. ft 6" TOPSOIL 784.34	(ft) 		(tsf)	(%)
6" TOPSOIL SILTY CLAY LOAM: Dark Brown, very stiff SILTY CLAY LOAM: Brown, very stiff SILTY CLAY LOAM: Brown, very SILTY CLAY LOAM: Brown, very				
SILTY CLAY LOAM: Dark Brown, very stiff 3 3 7 3.5 18.7 7 3.5 18.7 8 8 8 8 762.34 3 -<				
7 3.5 18.7 8 B 7 8 B 7 3 - - 6 2.68 19.3 -5 9 B - 3 - - - 6 2.68 19.3 - -5 9 B - 3 - - - -5 9 B - 3 - - - 7 2.75 21.9 - 111 B SILTY CLAY LOAM: Gray, very stiff - SILTY LOAM: Brown, medium - - - 3 - - - - 3 - - - - 3 - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - -				
8 8 B				
3	_			
SILTY CLAY LOAM: Brown, very stiff 779.34 - <td>-</td> <td></td> <td></td> <td></td>	-			
SILTY CLAY LOAM: Brown, very stiff 779.34 - <td></td> <td>1</td> <td></td> <td></td>		1		
5 9 B		1		24.1
SILTY CLAY LOAM: Brown, very stiff 3 -	-25	2		
stiff 3 - <td>-</td> <td></td> <td></td> <td></td>	-			
7 2.75 21.9				
SILTY LOAM: Brown, medium 				
SILTY LOAM: Brown, medium 3 	_			
		3	2 20	12 -
<u>774.34</u> <u>⊻</u>	30	о 8	B	12.1
	-50		-	
SILTY LOAM: Brown, very stiff				
9 2.47 16.8 SILLY CLAY TILL: Gray, SUIT	_			
8 S cobble/gravel @ 32 ft.				
SILIT LOAN: Dark Brown, very	_	4		
7 2.06 20.7		7	1.65	11.1
<u>-15</u> 8 S	-35	8	В	<u> </u>
	_			
6 1.90 19.3				
7 B SILTY CLAY TILL: Gray, very stiff	_			
stiff3		4		
		6	2.47	12.2

OUTE <u>1-57/74</u>	DESCRIPTIO	N			West	Abut I-74 over I-57	LO(GGED B	·	TC, M	LL
ECTION	<u>-1,6)R</u> LC	CATI	ON _	, SEC.	34, T\	NP. 20N, RNG. 8E, 3 PI	И				
OUNTYChampaign	_ DRILLIN	G ME	THOD			HSA		PE	A	UTO	
TRUCT. NO		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	n/a ft ft	D E P	B L O	U C S	M 0 1
BORING NO. B-1/4 Station 1060+0 Offset 2.0ft Le Ground Surface Flow 7	18 .ft 84.84 ft	T H (ff)	W S	Qu (tsf)	S T (%)	Groundwater Elev.: ∑ First Encounter ∑ Upon Completion	754.8ft ft	T H (ft)	W S	Qu (tsf)	S T (%)
ILTY CLAY TILL: Gray, ver continued)	y stiff					SILTY CLAY TILL: Gravet (continued)	ay, very stiff,				(70)
			4	2.27	10.8				6 8	2.06	12.
		-45	10	В				65	10	В	
ILTY CLAY TILL: Gray, stiff	<u>737.84</u>	!				SILTY CLAY TILL: GR	ay, stiff	<u></u>			
		_	3						6	4	10
		-50	5 12	1.48 B	11.1			-70	10 11	1.73 B	13.
			7						5		
very little recovery, some c	layey	-55	24 14		17.9		709	9.84 -75	11 15	1.03 B	13.
ravel		_				End of Boring					
ILTY CLAY TILL: Gray, ver	<u>727.84</u> y stiff,										
			6								
		0	10 13	2.68 B	13.1			_80			

Illinois Depar of Transporta	tme	nt		SC	DIL BORIN	G LOG		Page	<u>1</u> 2//	of _
Kaskaskia Engineering Group ROUTE I-57/74 DESCRIPTI	ON			East	Abut I-74 over I-57	LOGG	ED BY	Date	 TLM	<u>, 13</u>
SECTION _ 10(5-1-RS-1, 14-1,6)R _			, SEC.	. 34, T	WP. 20N, RNG. 8E, 3 P	M				
COUNTY Champaign DRILLI	NG ME	THOD			HSA	HAMMER TYPE		Al	JTO	
STRUCT. NO	D E P T	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a ft ft	D E P	B L O	U C S	M 0 1
BORING NO. B-2/B-3 Station 1063+03.80 Offset 3.0ft Left	H	S	Qu	T	Groundwater Elev.: First Encounter Upon Completion	<u>760.7</u> ft ft	H	S	Qu	T
Ground Surface Elev. <u>783.74</u> f 8" TOPSOIL: Dark Brown, silty	τ (π)		(tst)	(%)	⊈ After Hrs. FILL: Silty Clay, brow	ft n and dark	(π)		(tst)	(%
clay	04				brown, very stiff (cont	tinued)				
stiff		4	3.3	13.3			_			
		11	В				!			
		-			(likely original ground) Gray, sun _⊉				
		3	2.10	16.6				3	1.65	25
	-5	5	B	10.0			-25	4 4	B	25.
	24									
limestone aggregate pieces		5								
		7	1.15	21.4						
		6	В		SILTY CLAY: Brown,	<u>756.24</u> very stiff,	ŀ			
	_				trace gravel	-				
		4	1.65	14.6	-			4	2.89	13.
	-10	6	В				-30	10	В	
FILL: Silty Clay, dark brown/black and brown, very stiff	2 <u>4</u>	5								
		7	2.68	19.7		751.74	·			
770		7	B		SILTY CLAY LOAM T	TILL: Gray,	_			
FILL: Silty Clay, dark brown/black		1			LL: 15 PL: 12 PI: 3	3				
anu drown, suif		4	1.90	18.5				7 9	4.12	11
	-15	8	В				-35	11	В	
FILL: Silty Clay, dark brown to	24	-					\neg			
black, some organics, hard		5								
		11	5.56 R	20.1						
765.	74									
FILL: Silty Clay, brown and dark brown, very stiff		4						4		
cobbles @ 18 ft.		7	2.5	21.7	4			7		11.
	-20	9	P				-40	9		

(\mathbb{P})) Illinois of Tra	s Departr nsportati	nei ion	nt		SC	DIL BORIN	G LOC	3	F	Page	2	of <u>2</u>
	Kaskaskia Engin	vays eering Group								0	Date	2/6	6/15
ROUTE	I-57/74	DESCRIPTION	N			East A	Abut I-74 over I-57	L	OGGE) BY		TLM	
SECTION _	10(5-1-RS-1,	<u>14-1,6)R</u> LO	CATI	ON _	, SEC.	34, T	NP. 20N, RNG. 8E, 3 P	м					
COUNTY _	Champaign		G ME	THOD			HSA	_ HAMMER 1	YPE _		AU	ТО	
STRUCT. No Station	0		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a	ft ft	D E P	B L O	U C S	M O I
BORING NC Station Offset	D. <u>B-2/</u> 1063+ 3.0ft	B-3 03.80 Left 792.74	T H (ft)	W S	Qu (tsf)	S T	Groundwater Elev.: ∑First Encounter ∑Upon Completion	760.7	ft ft	T H (fft)	W S	Qu (tsf)	S T (%)
SILTY CLA	Y LOAM TILL:	<u> </u>			(001)	(///	SILTY CLAY LOAM T very stiff (continued)	TLL: Gray,				()	(70)
							SILTY CLAY TILL: G	ray, very stiff	- <u>721.74</u>				
		739.74		4	2.5	12.8			-		5		11.0
coarse	y, loose, meall	im to	-45	4 3	<u>Р</u> ,	16.8			_	-65	11 15	3.3 B	11.6
									-				
SILTY LOAI *Clay po	M TILL: Mediu rtion significan	<u>736.24</u> m dense tly	.	_					-				
32' and 44'				5 6 5	0.99 B	10.5			-	-70	6 10 12	3.55 B	12.2
									-				
SILTY CLAY	Y LOAM TILL:	<u>731.74</u> Brown,							-				
				5 10	3.6	11.7			-		5 10	2.68	11.8
			55	11	S		End of Boring]	708.74	-75	15	В	
SILTYCLA		<u>726.74</u> Gray,							-				
very stiff		-·••;		7					-				
			-60	9 15	3.35 B	12.2			-	-80			

Illinois Departn of Transportati	nen on	t		SC	DIL BORIN	G LO	G		Page	<u>1</u> 2/1	of <u>2</u>
Kaskaskia Engineering Group	_								Dale		1/13
ROUTEI-57/74 DESCRIPTION	I		N	. Borin	ig Pier I-74 over I-57		LOGGE	DBY		<u> </u>	
SECTION <u>10(5-1-RS-1, 14-1,6)R</u> LO	CATIO	N	, SEC.	34, TV	NP. 20N, RNG. 8E, 3 P	M					
COUNTY Champaign DRILLING		HOD			HSA	_ HAMMER	TYPE		AL	JTO	
STRUCT. NO. Station BORING NO.	D E P T	B L O W	U C S	M 0 \$	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:		_ ft _ ft	D E P T	B L O W	U C S	M O I S
Station 1061+31 Offset 95.0ft Left Ground Surface Elev. 761.30 ft	H (ft)	S	Qu (tsf)	т (%)		726.3	_ ft _ ft _ ft	H (ft)	S	Qu (tsf)	т (%)
8" TOPSOIL					SILTY CLAY LOAM 1 very stiff (continued)	TILL: Gray,					
		4 7 10	1.85 B	14.5	SILTY CLAY TILL: G	ray, stiff	<u>739.30</u>				
SILTY CLAY TILL: Gray, very stiff		5 8 8	3.92 B	11.3					2 4 6	1.40 B	16.1
		4 6 8	2.06 B	11.6	SAND: Gray, very loc	ose, fine	<u>734.80</u>				
		4 9	3.60 B	11.3					WOH WOH WOH		17.3
		4	3.10	10.4			<u>729.30</u>				
SILTY CLAY TILL: Gray, stiff		10 4	B	11.6	SAND: Gray, medium	n, fine			5		10.8
	 	7	B	11.0		Ā		-35	15		10.0
743.30		4 5 8	1.65 S	11.9							
SILTY CLAY LOAM TILL: Gray, very stiff	-20	4 6 10	2.06 B	11.5	SANDY CLAY: Gray,	hard	721.80		8 9 13	4.5+ P	12.3

(Reference) Illinois Depart of Transporta	tme tion	nt		SC	DIL BORIN	G LOO	3		Page	2	of <u>2</u>
Division of Highways Kaskaskia Engineering Group									Date	2/1	1/15
ROUTE 1-57/74 DESCRIPTION	ON		N	. Borin	ig Pier I-74 over I-57	L	.OGGEI	D BY		<u> </u>	
SECTION <u>10(5-1-RS-1, 14-1,6)R</u> L	OCATI	ON _	, SEC.	34, T\	NP. 20N, RNG. 8E, 3 P	М					
COUNTY Champaign DRILLI		THOD			HSA	_ HAMMER 1	YPE _		AL	ЛО	
STRUCT. NO Station	D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.		ft ft	D E P	B L O	U C S	M O I
BORING NO. B-32 Station 1061+31 Offset 95.0ft Left Ground Surface Fley. 761.30 ff	H (ft)	W S	Qu (tsf)	S T (%)	Groundwater Elev.: ⊈ First Encounter ⊈ Upon Completion ▼ After Hrs.	726.3	ft ft ft	T H (ft)	W S	Qu (tsf)	S T (%)
SANDY CLAY: Gray, hard (continued)	<u> </u>				SILTY CLAY TILL: Gi trace gravel (continue	ray, stiff, ed)		_			
SILTY CLAY TILL: Gray, very stiff	<u>30</u>						-				
		5 8 13	3.92 B	11.4			-		8 10 14	1.98 B	12.4
	 						-				
					CLAY TILL: Gray, me	edium	<u>694.30</u> _		10		
		5 7 13	2.68 B	15.5			-	-70	13 17 23	0.75 P	15.1
						rav. stiff	- <u>689.30</u>				
		3	0.07	10.0		,,	-		7	1.05	10.0
	-55	/ 14	2.27 B	12.0	End of Boring	1	686.30	-75	11 13	п.65 В	12.3
						3	-				
SILTY CLAY TILL: Gray, stiff, trace gravel	<u>30</u>						-				
	-60	6 8 11	1.32 B	12.7			-	-80			

of Transportal Division of Highways Kaskaskia Engineering Group	tion			SC	DIL BORIN	G LOG		Date	2/1	0/15
ROUTE <u>1-57/74</u> DESCRIPTIC	DN			S. P	ier I-74 over I-57	LOGGE	ED BY	•	TLM	
SECTION 10(5-1-RS-1, 14-1,6)R L	OCATI	ON _	, SEC.	34, T	NP. 20N, RNG. 8E, 3 P	Μ				
COUNTY Champaign DRILLIN	IG ME	THOD			HSA	_ HAMMER TYPE		Al	ЛО	
STRUCT. NO	D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev.	<u>n/a</u> ft ft	D E P T	B L O W	U C S	M 0 1 5
Station 1061+45 Offset 76.0ft Right Ground Surface Elev. 762.50	H (ft)	S	Qu (tsf)	т (%)	↓ First Encounter ↓ Upon Completion ↓ After	Dry ft Dry ft ft	H (ft)	S	Qu (tsf)	т (%)
TOPSOIL: Silty Clay, dark brown to black, very stiff					SILTY CLAY TILL: Gr (continued)	ay, very stiff	_			
		4	2.7	30.0		740.50	_			
760.0 SILTX CLAX: Brown, stiff	0	5	В		SILTY CLAY TILL: Gr with thin sand seams	ay, very stiff,				
SILTI GLAT. DIOWI, SUI										
		4	1.57	26.7				3	2.1	10.
	5	4	В				-25	6	В	
		1								
		2	1.25 P	21.3		<u>735.50</u> 735.50				
SILTY CLAY: Brown/Gray, stiff, trace gravel	0	2			stiff			3		
		5	1.81 B	14.8				5	1.85 B	11.
							30	5		
		4 9 7	1.57 B	12.5	SILTY CLAY LOAM T	<u>731.00</u> ILL: Gray,				
SILTY CLAY TILL: Grav. verv.stiff	0									
		2	2.06	11 9				8	3 71	12
	-15	6	00 B				-35	9	В	
		2								
		5	2.27 B	11.2						
		^						^		

Illinois Departn of Transportati	ner on	nt		SC		G LOG		Page	2	of <u>2</u>
Kaskaskia Engineering Group	1			S 0	lier 74 over 57	LOGGE	:n ev	Dale	 	<u>0/15</u>
	• <u> </u>			0.1						1
SECTION <u>10(5-1-RS-1, 14-1,6)R</u> LOO	CATIO	ON _	<u>, SEC.</u>	<u>34, T</u>	WP. 20N, RNG. 8E, 3 PN	Λ				
COUNTY Champaign DRILLING		THOD			HSA	HAMMER TYPE		Al	JTO	1
STRUCT. NO.	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: ∑First Encounter ∑Upon Completion _ ▼After Hrs	n/a ft ft Dry ft Dry ft ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)
very stiff (continued)					(continued)	ry sun	_			
SILTY CLAY TILL: Gray, stiff		4 5 7	1.90 B	12.8				4 3 4	1.81 B	12.5
SILTY CLAY TILL: Very stiff		3						6		
Thin sand seam at 49.5 ft.	 	5 7	1.81 B	13.7	-		 	7 6	1.57 B	12.6
>1" thick silt seam at 54 ft.	-55	2 4 7	1.81 B	13.1	End of Boring	687.50	-75	5 5 5	1.81 B	12.5
		3 4 7	1.81 B	12.3						

Appendix D Boring Profile Sheet

R	Division of Highways BFW Engineering & Testing Inc.	t ROUTE <u> -</u> SECTION COUNTY _ PROJECT	-57/74 _10(5-1-RS-1, 14-1,6)R Champaign LOCATION	SUBSU	RFACE PROFILE SN 010-0018/19	LEGEND EL = Elevation (ft) D = Depth Below Ex N = SPT N-Value (A Qu = Unconfined com Failure Mode (w% = Moisture Conte	<u>WATER TABLE L</u>	LEGEN Untered Ipletion	
	0	2,00	0 4,000	6,000	8,000		10,000	12,000	
800 -									800
		11	B-2/B-3 063+03.80				B-1/ 1060- 2.0 ft	/4 +08 Left	
790 ·		EL	3.0 ft Left L 783.74 ft				EL 784. 2/6/20	.84 ft	790
		N Qu w%	2/6/2015 8" TOPSOIL : Dark Brown				N Qu w%		
		15 33B 1	silty clay				15 3.5 B 20	6" TOPSOIL	
780		12 2.1 B 20	0 brown/gray					Very stiff	780
		13 1.2 B 20	0 FiLL: Silty Clay				18 2.8 B 20	Very stiff	
	B-32	12 1.7 B 10				B-33	17 2.5 S 20	SILTY LOAM: Brown	
770 -	1061+31	14 2.7 B 20	FILL: Sitty Clay			1061+45 		SILTY LOAM: Brown	770
	95.0 ft Left EL 761.30 ft	23 5.6 B 20				EL 762.50 ft	13 1.9 B 20	SILTY LOAM: Dark Brown very stiff	
	2/11/2015	16 2.5 P 20	0 Ark brown/black and brown			N Qu w% TOPS	13 2.5 B 20 SOIL∷Silty Clay	SILTY CLAY LOAM: Brown stiff	
700			stiff ⊈ FILL: Silty Clay			10 2.7 B 30 dark	brown to black stiff 3 20	SILTY CLAY LOAM: Brown very stiff	700
~ /00	16 3 9 B 10 SILTY CLAY: E	rown 8 1.7 B 30	0 dark brown to black some organics			7 1.6 B 30	(CI AV: Prour	CLAYEY:SAND: Light Brown	////
Ë	14 2.1 B 10	18 2.9 B 10	0 FILL: Silty Clay			3 1.3 P 20 stiff	16 3.3 B 10	SILTY CLAY LOAM: Gray	
tio	18 3.6 B 10	11.0	brown and dark brown very stiff			10 1.8 B 10 SILT	CLAY: Brown/Gray		
6750 ·	17 3.1 B 10 very stiff	20 4.1 B 10	0 ·····SILŤY CLAY: Brown/Gray ······· stiff (likely original ground)	•••••••••••••••••••••••••••••••••••••••		10 2.1 B 10	gravel	SILTY CLAY TILL: Gray	750
ă	13 1.7 B 10 SILTY CLAY T	LL: Gray	SILTY CLAY: Brown			12 2.3 B 10	15 2.5 B 10		
	13 1.7 S 10 stiff 16 2 1 B 10		trace gravel			13 2.9 B 10 SILT	CLAY TILL: Gray		
740 ·	···· very stiff	4 2.5 P 10	0 hard				CLAY TILL: Gray	SILTY CLAY TILL: Gray	740
	10 1.4 B 20 SILTY CLAY T	LL: Gray 3 20				Very	stiff thin sand seams 17 15 B 10		
	SAND: Gray	11 1 B 10	0 SILTY LOAM TILL: Medium dense	acon between 20' and 44'		11 1.9 B 10 SILT	Y CLAY LOAM TILL: Gray		
730	WOII 20 very loose	21 3.6 5 10				stiff			730
	28 10 Y CAND. Com		very stiff			17 3.7 B 10		stiff	
	- SAND: Gray medium	24 3.4 B 10	0 SILTY CLAY LOAM TILL: Gray			20 3 3 B 10			
720	22 4.5 P 10 SANDY CLAY:	Gray	very stiff			very	stiff 18 2.1.B 10	SILTY CLAY TILL: Gray	
120	21 3.9 B 10	26 3.3 B 10				12 1.9 B 10 SILT	Y CLAY TILL: Gray	wet	120
		22 3.6 B 10	0				21 1.7 B 10		
-	20 2.7 B 20		SILTY CLAY TILL: Gray			12 I.O D IU 6	26 1 B 10	SILTY CLAY TILL: Gray	
/10 ⁻		25 2.7 B 10	0 very stiff			11 1.8 B 10		g · · · · · · · · · · · · · · · · · · ·	/10
	ZI Z.3 B IO SILTY CLAY T	LL: Gray							
	19 1.3 B 10 🎉					11 1.8 B 10			
700	SILTY CLAY T	LL: Gray	•••••••••••••••••••••••••••••••••••••••			7 1.8 B 10		······	700
	24 2 B 10 stiff trace gravel								
	40 0.8 P 20 CLAY THE G	av				13 1.6 B 10			
690 ·				·····		10 1 8 B 10			690
	24 1.7 B 10 stiff								
680			0 4 000	÷	9 000		10,000	12 000	680
	U	2,000	4,000	0,000	0,000		10,000	12,000	

Appendix D

Pile Capacity Tables

Pile Design Table for WEST ABUT utilizing Boring #1&4

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wal	ls	Steel	HP 10 X 57			Steel	HP 14 X 73		
	150	83	29		154	85	39		142	78	24
	163	90	31		164	90	41		160	88	29
	183	100	34		167	92	44		172	94	31
	199	110	36		175	96	46		200	110	34
	214	118	39		188	104	49		215	118	36
	229	126	41		198	109	51		227	125	39
	238	131	44		215	118	54		241	133	44
	250	137	46		226	125	56		253	139	46
Metal S	Shell 12"Ф	w/.25" walls	S		232	128	59		274	151	49
	150	83	29		242	133	61		288	158	51
	163	90	31		249	137	64		314	173	54
	183	100	34		258	142	66		331	182	56
	199	110	36		260	143	69		336	185	59
	214	118	39		268	147	70		350	192	61
	229	126	41		276	152	73		357	196	64
	238	131	44		284	156	75		369	203	69 7 0
	250	137	46		292	161	78		383	210	70
	266	146	49		300	165	80		394	217	73
	280	154	51		308	170	83		405	223	75
	300	105	54 56		310	174	85		416	229	78
	310	1/0	50 50	Stool	324	178	00		428	230	80
	330	101	09 61	Sleer	141	77	21		459	241	03 95
Motal	טייי 14"מל	109 w/ 25" wall	01 R		141	80	34		400	240	88
Wielai C	150	9 W/.23 Walk	5 24		102	09	36	Stool	401 HD 1/ Y 80	204	00
	172	95	2 4 26		186	90 102	30 30	Steel	145	80	24
	172	98	29		198	102	41		162	89	29
	193	106	31		200	100	44		174	96	31
	217	119	34		210	115	46		202	111	34
	236	130	36		226	124	49		218	120	36
	253	139	39		238	131	51		230	126	39
	271	149	41		259	142	54		244	134	44
	280	154	44		273	150	56		256	141	46
	294	162	46		278	153	59		277	152	49
	314	173	49		290	159	61		291	160	51
	330	182	51		297	163	64		318	175	54
	355	195	54		308	169	66		335	184	56
	375	206	56		308	170	69		340	187	59
	388	214	59		319	175	70		354	195	61
	405	223	61		329	181	73		361	199	64
Metal S	Shell 14"Ф	w/.312" wal	ls		338	186	75		373	205	69
	150	83	24		348	191	78		387	213	70
	172	95	26		357	196	80		398	219	73
	178	98	29		367	202	83		410	225	75
	193	106	31		376	207	85		421	232	78
	217	119	34		386	212	88		432	238	80
1	236	130	36	Steel	HP 12 X 63				444	244	83
	253	139	39		142	78	31		455	250	85
	271	149	41		164	90	34		467	257	88

	280	154	44		177	97	36	Steel	HP 14 X 102		
	294	162	46		188	103	39		147	81	24
	314	173	49		200	110	41		164	90	29
	330	182	51		202	111	44		176	97	31
	355	195	54		211	116	46		205	113	34
	375	206	56		228	126	49		221	121	36
	388	214	59		240	132	51		233	128	39
	405	223	61		261	144	54		247	136	44
	418	230	64		275	151	56		259	142	46
	434	238	66		281	154	59		281	154	49
	441	242	69		293	161	61		295	162	51
	452	249	70		300	165	64		322	177	54
	466	256	73		310	171	66		339	187	56
	480	264	75		311	171	69		344	189	59
	493	271	78		322	177	70		358	197	61
	507	279	80		332	182	73		365	201	64
Steel I	HP 8 X 36				341	188	75		377	207	69
	148	81	49		351	193	78		391	215	70
	155	86	51		360	198	80		403	222	73
	168	92	54		370	203	83		414	228	75
	177	97	56		379	209	85		426	234	78
	183	101	59		389	214	88		437	240	80
	191	105	61	Steel HP	12 X 74				449	247	83
	197	108	64		144	79	31		460	253	85
	204	112	66		166	91	34		472	259	88
	206	114	69		180	99	36	Steel	HP 14 X 117	,	
	212	117	70		190	105	39		149	82	24
	219	120	73		203	112	41		166	91	29
	225	124	75		205	113	44		178	98	31
	232	127	78		214	118	46		208	114	34
	238	131	80		231	127	49		224	123	36
	245	135	83		243	134	51		236	130	39
	251	138	85		265	146	54		250	138	44
	257	142	88		279	154	56		262	144	46
Steel I	HP 10 X 42				285	156	59		284	156	49
	150	83	39		297	163	61		298	164	51
	161	88	41	1	304	167	64		326	179	54
	164	90	44		315	173	66		343	189	56
	171	94	46		315	173	69		348	191	59
	184	101	49		326	179	70		362	199	61
	194	107	51	1	336	185	73		370	203	64

Pile Design Table for EAST ABUT utilizing Boring #2&3

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wal	ls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	136	75	21		133	73	26		148	81	21
	159	87	24		156	86	29		184	101	24
	177	97	26		170	93	34		201	111	26
	205	113	29		170	93	36		240	132	29
	228	126	31		173	95	39		249	137	34
Metal S	Shell 12"Φ	w/.25" walls	5		181	100	44		249	137	36
	136	75	21		187	103	46		256	141	39
	159	87	24		219	120	49		258	142	44
	177	97	26		234	128	51		267	147	46
	205	113	29		246	135	54		325	179	49
	228	126	31		260	143	56		346	190	51
	239	131	39		273	150	59		362	199	54
	255	140	41		287	158	61		381	210	56
	259	142	44		303	167	64		400	220	59
	268	147	46		317	174	66		419	230	61
	299	164	49		323	178	69		442	243	64
	320	176	51		336	185	70		462	254	66
	340	187	54		349	192	73		466	257	69
Metal S	Shell 14"Φ	w/.25" walls	6		363	199	75		486	268	70
	146	80	19		376	207	78		505	278	73
	161	88	21		390	214	80		524	288	75
	190	105	24	Steel	HP 12 X 53				543	299	78
	212	116	26		148	81	24		562	309	80
	246	135	29		163	89	26	Steel	HP 14 X 89		
	273	150	31		193	106	29		150	82	21
	283	155	39		205	113	34		186	103	24
	302	166	41		205	113	36		204	112	26
	304	167	44		210	115	39		244	134	29
	314	1/3	46		216	119	44		252	139	34
	354	195	49		223	122	46		252	139	36
	380	209	51		265	146	49		259	143	39
Matal	402 Shall 44"(221 / 242"	54		283	150	51		201	144	44
wietai a		w/. 312 wai	10		297	103	04 56		270	140	40
	140	00	19		220	101	50		350	101	49 51
	101	00 105	21		329	101	59 61		300	193	51
	190	105	24		343	190	64		200	201	04 56
	212	125	20		204	200	04 66		300 405	212	50
	240	150	29		207	210	60		405	223	59
	273	155	30		307 402	213	70		424	235	64
	200	166	3 3 //1	Stool	HP 12 X 63	221	70		447	2 4 0 257	66
	304	167	41	Steer	1/10	82	24		400	257	69
	31/	173	46		164	02 00	24		102	200	70
	354	195	40 40		195	107	20		511	281	73
	380	209			207	114	34		530	207	75
	402	200	54		207	114	36		549	302	78
1	425	234	56		212	116	39		568	313	80
	449	247	59		217	120	44	Steel	HP 14 X 10	2	
	472	260	61		225	123	46		152	- 83	21
1	714	200	01		220	120			102	00	21

498	274	64	268	147	49	189	104	24
Steel HP 8 X 36			286	157	51	207	114	26
148	82	46	300	165	54	247	136	29
170	93	49	316	174	56	255	140	34
181	100	51	332	183	59	255	140	36
192	105	54	348	192	61	262	144	39
203	112	56	368	202	64	264	145	44
214	117	59	385	212	66	273	150	46
225	124	61	390	215	69	334	184	49
237	130	64	406	223	70	355	195	51
248	137	66	422	232	73	371	204	54
255	140	69	438	241	75	391	215	56
264	145	70	454	250	78	410	225	59
275	151	73	470	259	80	429	236	61
285	157	75	Steel HP 12 X 74			453	249	64
Steel HP 10 X 42			152	84	24	474	260	66
130	71	26	167	92	26	478	263	69
153	84	29	198	109	29	498	274	70
166	91	34	210	115	34	517	285	73
166	91	36	210	115	36	537	295	75
170	93	39	215	118	39	556	306	78
177	98	44	220	121	44	575	316	80
183	101	46	228	125	46	Steel HP 14 X 117		
214	118	49	272	150	49	141	78	19
228	126	51	290	159	51	154	85	21
240	132	54	304	167	54	192	105	24
254	140	56	321	176	56	210	115	26
267	147	59	337	185	59	251	138	29
281	154	61	353	194	61	258	142	34
296	163	64	373	205	64	258	142	36
310	171	66	390	215	66	266	146	39
317	174	69	396	218	69	267	147	44
329	181	70	412	227	70	276	152	46
			428	235	73	338	186	49
			444	244	75	359	198	51
			461	253	78	375	206	54
			477	262	80	395	218	56
			Steel HP 12 X 84		<i>a</i> :	415	228	59
			125	69	21	434	239	61
			154	85	24	458	252	64
I			170	93	26	479	264	66

Pile Design Table for EASTBOUND LANE PIER utilizing Boring #33

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wa	ls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	159	87	26		177	97	39		172	95	26
	182	100	29		187	103	41		207	114	29
	201	110	31		195	107	44		225	124	31
	220	121	34		204	112	46		243	134	34
	238	131	36		214	118	49		258	142	39
	248	136	39		223	123	51		271	149	41
Metal S	Shell 12"Ф	w/.25" walls	S		232	128	54		283	155	44
	159	87	26		241	133	56		295	163	46
	182	100	29		250	138	59		308	170	49
	201	110	31		260	143	61		321	177	51
	220	121	34		266	146	64		334	184	54
	238	131	36		275	151	66		347	191	56
	248	136	39		285	157	69		360	198	59
	262	144	41		289	159	70		372	205	61
	275	151	44		298	164	73		381	209	64
	288	158	46		307	169	75		392	216	66
	302	166	49		315	173	78		409	225	69
	315	173	51		324	178	80		413	227	70
	328	181	54		333	183	83		425	234	73
	342	188	56		341	188	85		437	241	75
Metal S	Shell 14"Ф	w/.25" walls	S		350	192	88		449	247	78
	172	95	24		358	197	90		461	254	80
	188	103	26	Steel	HP 12 X 53				473	260	83
	217	120	29		167	92	29		486	267	85
	239	132	31		183	100	31		498	274	88
	261	144	34		198	109	34		510	280	90
	283	156	36		213	117	36	Steel	HP 14 X 89		
	292	161	39		213	117	39		1/4	96	26
	308	170	41		224	123	41		210	116	29
	324	1/8	44		234	129	44		228	126	31
	339	187	46		245	135	46		246	136	34
	355	195	49		256	141	49		261	144	39
	371	204	51		266	147	51		274	151	41
	380	212	54		277	153	54		280	157	44
Motol	402 Shall 44"M	221 / 242"	00		288	158	50		299	164	40
wetar a	511011 14 Ψ	WI.JIZ Wa	04		299	104	59 61		312	172	49
	100	90	24		217	170	64		320	179	51
	100	103	20		207	174	66		251	100	54
	217	120	29		327	100	60		364	200	50
	259	132	24		340	107	70		277	200	59 61
	201	144	36		355	190	70		385	207	64
	200 202	161	30		300	201	75		303	∠1∠ 219	0 4 66
	292	170	39 41		375	201	75		113	210	60
	300	170	41 11		313	200	20 20		413	221	70
	320	197	7 7 76		305	212	83		130	230	73
	328	107	40 70		10e 282	217 222	03 85		400	201 212	75
	355	204	43 51		400	220	00 QQ		44Z 155	240	70 70
	386	∠∪ 4 010	51	Steel	410 HD 12 Y 62	229	00		400	200	20 80
I	380	212	54	Steel	TF 12 X 03				407	257	80

402	221	56	169	93	29	479	263	83
418	230	59	184	101	31	491	270	85
433	238	61	200	110	34	503	277	88
446	245	64	215	118	39	515	283	90
460	253	66	226	124	41	Steel HP 14 X 102) I	
477	263	69	236	130	44	177	97	26
485	267	70	247	136	46	213	117	29
500	275	73	258	142	49	231	127	31
Steel HP 8 X 36			269	148	51	250	137	34
176	97	51	280	154	54	264	145	39
183	101	54	291	160	56	278	153	41
190	105	56	302	166	59	289	159	44
198	109	59	313	172	61	303	166	46
205	113	61	320	176	64	316	174	49
211	116	64	330	182	66	329	181	51
218	120	66	343	189	69	342	188	54
226	124	69	348	191	70	355	195	56
229	126	70	358	197	73	368	202	59
236	130	73	368	202	75	381	210	61
243	134	75	378	208	78	389	214	64
250	137	78	389	214	80	401	221	66
257	141	80	399	219	83	418	230	69
264	145	83	409	225	85	423	232	70
271	149	85	419	231	88	435	239	73
278	153	88	430	236	90	447	246	75
284	156	90	Steel HP 12 X 74			460	253	78
Steel HP 10 X 42			172	94	29	472	260	80
173	95	39	187	103	31	484	266	83
183	101	41	203	112	34	497	273	85
191	105	44	218	120	39	509	280	88
200	110	46	229	126	41	521	287	90
209	115	49	239	132	44	Steel HP 14 X 117		
218	120	51	250	138	46	179	98	26
227	125	54	262	144	49	216	119	29
236	130	56	273	150	51	234	129	31
245	135	59	284	156	54	253	139	34
254	140	61	295	162	56	267	147	39
261	144	64	306	168	59	281	155	41
269	148	66	317	174	61	293	161	44
280	154	69	324	178	64	306	168	46
283	156	70	334	184	66	319	176	49

Pile Design Table for WESTBOUND LANES PIER utilizing Boring #32

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wa	ls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	137	75	27		191	105	45		129	71	27
Metal S	Shell 12"Ф	w/.25" walls	s		203	112	47		198	109	30
	137	75	27		211	116	50		206	113	32
	210	115	35		222	122	52		213	117	35
	235	129	37		223	123	55		249	137	37
	256	141	40		230	127	57		262	144	40
	279	153	42		244	134	60		282	155	45
	291	160	45		251	138	65		298	164	47
	308	170	47		256	141	67		307	169	50
	322	177	50		268	148	71		318	175	55
	338	186	52		274	151	74		329	181	57
	345	190	55		280	154	76		352	193	60
Metal S	Shell 14"Ф	w/.25" walls	S		286	158	79		355	195	65
	161	89	27		292	161	81		362	199	67
	252	139	35	Steel	HP 12 X 53				380	209	71
	282	155	37		176	97	35		389	214	74
	305	168	40		199	109	37		397	218	76
	332	182	42		211	116	40		405	223	79
	344	189	45		229	126	42		414	228	81
	364	200	47		231	127	45	Steel I	HP 14 X 89		
	380	209	50		245	135	47		131	72	27
	398	219	52		253	139	50		201	111	30
	405	223	55		265	146	55		210	115	32
Metal S	Shell 14"Ф	w/.312" wa	ls		274	151	57		217	119	35
	161	89	27		292	161	60		252	139	37
	252	139	35		298	164	65		265	146	40
	282	155	37		303	167	67		285	157	45
	305	168	40		319	175	71		302	166	47
	332	182	42		326	179	74		311	171	50
	344	189	45		333	183	76		322	177	55
	364	200	47		340	187	79		332	183	57
	380	209	50		347	191	81		356	196	60
	398	219	52	Steel	HP 12 X 63	~~	0.5		359	198	65
	405	223	55		180	99	35		366	201	67
	417	230	57		201	110	37		385	212	71
	438	241	60		213	117	40		393	216	74 7 0
	454	250	62		232	127	42		402	221	76
	456	251	65		233	128	45		410	225	79
	464	255	67 70		247	136	47	Cto ol I		230	81
	483	266	70		256	141	50	Steell	HP 14 X 10	2 70	07
	484	266	71		268	147	55		132	73	27
	494	272	74		277	152	57		204	112	30
Ctool I	505	278	76		295	162	60 05		212	117	32
Steel	100	100	<u> </u>		300	105	05		220	121	35
	192	106	60		306	108	07		250	141	37
	200	110	05 67		327	104	/1 74		209	148	40 45
	204	112	67 70		328	181	74		289	159	45
	213	117	/U 74		330	100	/0 70		300	100	47
1	213	117	71		343	188	79		315	173	50

	218	120	74	350	192	81	326	179	55
	223	123	76	Steel HP 12 X 74			336	185	57
	228	125	79	182	100	35	360	198	60
	233	128	81	204	112	37	363	200	65
Stee	HP 10 X 42			217	119	40	370	203	67
	187	103	45	235	129	42	389	214	71
	199	109	47	237	130	45	397	219	74
	206	114	50	251	138	47	406	223	76
	217	119	52	259	143	50	415	228	79
	218	120	55	271	149	55	423	233	81
	225	124	57	280	154	57	Steel HP 14 X 117		
	239	131	60	299	164	60	134	74	27
	246	136	65	304	167	65	208	114	30
	251	138	67	310	171	67	216	119	32
	263	145	71	326	179	71	223	123	35
	269	148	74	333	183	74	260	143	37
	275	151	76	340	187	76	273	150	40
	281	154	79	347	191	79	293	161	45
	287	158	81	354	195	81	310	170	47
				Steel HP 12 X 84			318	175	50
				185	101	35	329	181	55
				207	114	37	340	187	57
				220	121	40	364	200	60
				239	131	42	367	202	65
				240	132	45	374	206	67
				255	140	47	393	216	71
				263	145	50	402	221	74
				275	151	55	410	226	76
				284	156	57	419	230	79
				303	166	60	428	235	81
				308	170	65	Precast 14"x 14"		
1				314	173	67	183	101	20
1				330	181	71	200	110	22
				337	185	74	204	112	25
				344	189	76	205	113	27
1				352	193	79	Timber Pile		
				359	197	81	134	74	27
 									
1									
							1		

Appendix E

Integral Abutment Pile Selection Chart

