

Abbreviated Structure Geotechnical Report

Original Report Date: 10/21/2022	Proposed SN: 107	1-0207 Route:	FAU 5147 (Mulford Road)
Revised Date: 11/4/2022	Existing SN: 102	1-0131 Section:	(201-3)K and (4-1,5)R
Geotechnical Engineer: Matt D. Maste	erson, PE	County:	Winnebago
Structural Engineer: Matthew Hellent	hal, PE, SE	Contract:	64C24

Indicate the proposed structure type, substructure types, and foundation locations (attach plan and elevation drawing):

The new structure will be a two span plate girder bridge. The substructures will consist of pile-supported integral abutments and a multi-column pier with pile-supported footing. According to information provided by the structural designer, the estimated vertical factored substructure loads are 1,215 kips at south abutment, 3,231 kips at the pier and 1,547 kips at north abutment. See Location Map - Exhibit A. The TS&L drawing is attached as Exhibit C.

Discuss the existing boring data, existing plans foundation information, new subsurface exploration and need for any additional exploration to be provided with SGR Technical Memo (attach all data and subsurface profile plot):

Underground coal mine information available from ISGS indicates that the project area has not been undermined. Five boring logs were provided to Kaskaskia Engineering Group, LLC. by IDOT for borings B-1g through B-4g. Borings B-1g through B-3g were drilled in July 2008. Borings B-4g and B-4g Shelby tube (ST) were drilled in February and May 2016. Locations of the borings are as shown on the attached Boring Location Plan (Exhibit B).

In general, the subsurface condition can be stratified into three layers. The top layer consisting of sandy loam, silty clay loam, and clay loam, with occasional sand. The bottom of top layer is approximately El. 793, El. 791 and El. 797 at boring B-1g, B-2g and B-3g, respectively. Middle layer consists of sandy loam till with gravel with bottom at approximately El. 781, El. 781 and El. 775 at boring B-1g, B-2g and B-3g, respectively. All borings were terminated at third lower layer which consisted of very dense sand. The borings were terminated at El. 776.7, El. 774.7 and El. 762.7 at boring B-1g, B-2g and B-3g, respectively. See Boring Logs and Soil Profile - Exhibit D for additional details.

The subsurface conditions encountered at B-4g SPT boring match descriptions given above. The borings were terminated at El. 728 and El. 786.6 at SPT and ST borings, respectively.

Laboratory tests were performed on selected samples from Shelby tube boring B-4g (ST) and summary results are attached in Exhibit G.

Provide the location and maximum height of any new soil fill or magnitude of footing bearing pressure. Estimate the amount and time of the expected settlement. Indicate if further testing, analysis, and/or ground improvement/treatment is necessary:

The proposed structure will be built in the same location as the existing structure; therefore, settlement will not be a concern.

Identify any new cuts or fill slope angles and heights. Estimate the factor of safety against slope failure. Indicate if further testing, analysis or ground improvement/treatment is necessary:

The TS&L provided to KEG indicated new fill behind the North and South Abutments with a height of approximately 10 ft and a 1H:1V slope. The slope of the abutments will be 2H:1V. Stability analysis using SLOPE/W was performed using the proposed roadway and bridge geometry on the TS&L and soil characteristics from Borings B-3g and B-1g. Two conditions were modeled for each scenario: end-of-construction and long-term stability. A critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability. The slope stability analyses indicated that the required minimum FOS for all conditions were met.

To model the end-of-construction condition, full cohesion and a friction angle of 0 degrees were assumed. Nominal values for cohesion were used with full friction angle to model the long-term condition to analyze the theoretical

condition where pore water pressure has dissipated. Nominal values were between 50 and 250 psf for the cohesive soils, with friction angles between 26 and 34 degrees.

The Bishop Circular Method, which generates circular-shaped failure surfaces, was used to calculate the critical failure surfaces and FOS for the proposed conditions. The FOS obtained in the analysis is summarized below. SLOPE/W program output from this analysis can be found in SLOPE/W Slope Stability Analysis, Exhibit E.

South Abutment: End of Construction=3.9Long Term=1.5North Abutment: End of Construction=3.0Long Term=1.5

Indicate at each substructure, the 100-year and 200-year total scour depths in the Hydraulics report, the nongranular scour depth reduction, the proposed ground surface, and the recommended foundation design scour elevations:

N/A

Determining the seismic soil site class, the seismic performance zone, the 0.2 and 1.0 second design spectral accelerations and indicate if that the soils are liquefiable:

The seismic Site Class is D, the SPZ is 1, SDS = 0.135g, and SD1 = 0.080g. The soils are not considered to be liquefiable for the design earthquake.

Confirm feasibility of the proposed foundation or wall type and provide design parameters. Attach a pile design table indicating feasible pile types, various nominal required bearings, factored resistances available and corresponding estimated lengths at locations where piles will be used. Provide factored bearing resistance and unit sliding resistance at various elevations and confirm no ground improvement/treatment is necessary where spread footings are proposed. Estimated top of rock elevations as well as preliminary factored unit side and tip resistance values shall be indicated when drilled shafts are proposed:

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads. The IDOT Static Method uses the LRFD Pile Design Guide Procedure to estimate the pile lengths. The tables used to estimate the pile lengths and the Pile Calculations are attached in Exhibit F. The estimated pile lengths for applicable Metal Shell pile types are shown in the Pile Design Table below. The Nominal Required Bearing (RN) represents the resistance the pile will experience during driving and will assist the contractor in selecting a proper hammer size. The Factored Resistance Available (RF) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loadings.

Calculate the estimated water surface elevation and determine the need for cofferdams (type 1 or 2), and seal coat:

N/A

Assess the need for sheeting or soil retention or temporary construction slope and provide recommendation for other construction concerns:

Temporary sheet piling will not be required since the bridge will be constructed using a full closure and a detour. Temporary Soil Retention Systems may be required for support of any required Stage construction for retained heights greater than 15 feet and should be designed in accordance with IDOT Design Guide 3.13.1 - Temporary Sheet Piling Design.

11/04/2022 Exp. 11/30/2023 EXHIBIT A

Winnebago County, Illinois

EXHIBIT B

BORING LOCATION PLAN

BORING LOCATION MAP Mulford Road over I39/US20

Winnebago County, IL

B KEG JOB #19-1138.00

EXHIBIT C

TYPE, SIZE AND LOCATION PLAN

11/16/2021 8:15:08 AM

\$DATE\$ \$TIME\$

	DETAILS
M	ULFORD ROAD OVER I-39 & US 20
<u> </u>	A.I. 39 – SEC. (201–3)K & (4–1,5)R
	WINNEBAGO COUNTY
	STA. 50+00.10
	<u>STRUCTURE NO. 101-0207</u>

	F.A.I. RTE	SEC ⁻	TION		COUNTY	TOTAL SHEETS	SHEET NO.
	39	(201 - 3)K 8	& (4 - 1,5)R		WINNEBAGO	2	2
		WHA # 1390	D19		CONTRA	CT NO. 6	64C62
HEETS			ILLINOIS	FED. A	D PROJECT		

EHIIBIT D

BORING LOGS AND SOIL PROFILES

Illinois D of Trans	epartm portatio	ent n		S	DIL BORING LO)G	Pag	e <u>1</u>	of <u>2</u>
Illinios Department of T ROUTE FAP 301	ransportation/D-2	RIPTIO	P	92-111 Bypa:	I-06 Mulford Road Bridge over US	20	Date	• <u>7/</u>	25/08
SECTION(201-3) K (4-1	, 5) K	LOCA	TION	Cherr	y Valley Twp 9 NE, SEC., TWP.	43N. RNG.	2E	I <u>J. S</u>	uaung
COUNTY Winnebago	DRILLING M	ETHO	D	Но	llow Stem Auger HAMME	R TYPE B-	53 Diedr	ich Au	tomatic
STRUCT. NO. Station BORING NO. B-1g Station 51+57 Offset 14.00ft Lt CL Ground Surface Eley. 825	D E P T H 70 ft (ft)	B L O W S	U C S Qu (tsf)	M O I S T	Surface Water Elev		D B E L P O T W H S	U C S Qu	M O I S T
SOFT brown SANDY LOAM	<u> </u>		0.2	14.0	VERY STIFF brown/gray CLAY		5		(70)
			0.3 P	14.0	LOAM WIT ORGANICS	804.20	7 11	3.5 B	19.0
SOFT tan/brown SANDY LOAM	823.20 821.70	1 1 2	0.3 P	15.0	VERY STIFF dark gray SILTY CLAY LOAM	801.70	5 7 9	3.3 B	21.0
HARD tan SANDY LOAM TILL	 819.20	6 9 9	4.5 P	8.0	STIFF dark gray SILTY LOAM		25 2 4 6	1.3 B	28.0
VERY STIFF brown/gray CLAY LOAM	816.70	3 6 12	2.4 B	21.0	STIFF gray CLAY LOAM	 796.70	1 2 5	1.2 B	25.0
HARD tan SANDY LOAM TILL	814.20	7 7 9	4.5 P	9.0	MEDIUM gray/brown CLAY LOAN with SAND lens		30 2 3 6	1.0 P	21.0
tan SANDY LOAM with large piece of GRAVEL in nose	811.70	2 6 8		11.0	MEDIUM tan SANDY LOAM TILL	791.70	3 5 8	0.6 S	9.0
VERY STIFF brown/gray CLAY LOAM	 809.20	3 6 9	2.4 B	20.0	VERY STIFF tan SANDY LOAM TILL	 789.20	5 4 14 13	2.3 P	9.0
VERY STIFF brown/gray CLAY LOAM	806.70	3 4 7	3.1 B	22.0		786.70	13 20 25		8.0
	-20					-4(

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois De	epartment	SOIL BORING LOG	Page <u>2</u> of <u>2</u>
Division of Highways Illinios Department of Tra	ansportation/D-2	SOIL BORING LOG	Date 7/25/08
ROUTE FAP 301		P92-111-06 Mulford Road Bridge over US 20 Bypass, .25 m. S. of Sandy Hollow Road LC	GGED BY J. Strating
SECTION(201-3) K (4-1,	5) K LOCATIO	N Cherry Valley Twp 9 NE, SEC., TWP. 43N, RNG	.2E
COUNTY Winnebago		Hollow Stem Auger HAMMER TYPE B	-53 Diedrich Automatic
STRUCT. NO Station Station51+57 Offset14.00ft Lt CL Ground Surface Elev. 825.7 HARD tan SANDY LOAM TILL HARD tan SANDY LOAM TILL	D B U E L C P O S T W H S Qu 0 ft (ft) (/6'') (ts 25 42 784.20 61 	J M Surface Water Elev. ft S I Stream Bed Elev. 77.00 ft S I Groundwater Elev.: 793.2 ft Image: Stream Bed Elev. U T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T First Encounter 793.2 ft Image: Stream Bed Elev. Stream Bed Elev. T Hrs. Image: Stream Bed Elev. Stream Bed Elev. Stream Bed Elev. Stream Bed Elev. T Hrs. Image: Stream Bed Elev. Stream Bed Elev. Stream Bed Elev. T Hrs. Image: Stream Bed Elev. Stream Bed Elev. Stream Bed Elev. Stream Bed Elev.	
VERY DENSE brown dirty coarse SAND & GRAVEL	-45 24 26 779.20 30		;
VERY DENSE tan dirty SAND & GRAVEL			
End of Boring			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois De	epart	me	ent		S		G		Page	e <u>1</u>	of <u>1</u>
Division of Highways Illinios Department of Tra	ansportation/	D-2	••	Р	92-111	I-06 Mulford Road Bridge over US 2	20		Date	7/2	27/08
ROUTEFAP 301	DE	SCF	RIPTIO)N	Bypas	ss, .25 m. S. of Sandy Hollow Road	LC	DGG	ED B	(<u>W.</u>	Garza
SECTION(201-3) K (4-1,	5) K		LOCA	TION	Cherr	y Valley Twp 9 NE, SEC. , TWP. 4	3N, RNC	G. 2E			
COUNTY Winnebago	DRILLING	g me	ETHO	D	·Ho	Ilow Stem Auger HAMMER		3-53	Diedri	ch Aut	omatic
STRUCT. NO. Station BORING NO. B-2g Station 50+10		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev77.00 Groundwater Elev.: First Encounter793.7	ft ft ft ▼	D E P T H	B L O W S	U C S Qu	M O I S T
Offset <u>34.00ft Lt CL</u> Ground Surface Elev. 803.7	0 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion 790.7	_ft ⊻	(ft)	(/6'')	(tsf)	(%)
MEDIUM brown SILTY CLAY				0.5	18.0	VERY DENSE tan SANDY LOAM TILL with GRAVEL	_ "		12 20	(,	(/0)
		_		P			782.20		30		
STIFF tan SILTY CLAY LOAM	801.20		3 5 6	1.5 B	26.0	VERY DENSE light brown fine SAND	-		13 21 30		
	100.10						779.20				
MEDIUM brown SANDY LOAM		-5	2 3	0.8	17.0	VERY DENSE gray CLAY LOAM	-	-25	21		13.0
	797.20	_	5	P			776.70	-	45		
MEDIUM tan dirty SAND	-	_	2		14.0	VERY DENSE gray clean medium SAND			10		
	794.70 _		7			End of Boring	774.70		52		
LOOSE tan dirty SAND	792.20	<u>-10</u>	7 3 4		11.0		-	-30			
VERY DENSE tan SANDY LOAM TILL with GRAVEL	 	7	19 23		9.0		-				
VERY DENSE tan SANDY LOAM	789.70 _	-15	17				-	-35			
			31				-				
VERY DENSE tan SANDY LOAM TILL with GRAVEL		-	19 27 33				_				
		-20						-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois De of Transp	epart ortat	me io	ent n		S	DIL BORING LO	G		Page	<u> </u>	of <u>2</u>
Division of Highways Illinios Department of Tra	ansportation/	D-2		P	92-11	1-06 Mulford Road Bridge over US 2	20		Date	7/2	28/08
ROUTE FAP 301	DE	SCR	RIPTIO	N	Bypa	ss, .25 m. S. of Sandy Hollow Road	LC	DGG	ED B	W. (Garza
SECTION(201-3) K (4-1,	5) K		LOCA	TION	Cherr	y Valley Twp 9 NE, SEC., TWP.4	3N, RNG	3 .2E			
COUNTY Winnebago	DRILLING	g me	ETHO	D	Ho	Ilow Stem Auger HAMMER		3-53	Diedri	ch Aut	omatic
STRUCT. NOStation		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev77.00	ft ft	D E P	B L O	U C S	M O
BORING NO. B-3g		Т	W	Qu	S	Groundwater Elev.:		т ц	W	0	S
Offset 43+70 Ground Surface Elev. 824.2	0 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion 805.2	_ ft ⊻ _ ft ⊻ _ ft -	(ft)	(/6'')	(tsf)	(%)
Shoulder						STIFF gray SILTY CLAY LOAM	_ !!	()	2	()	
	a de la companya de la						802 70		3 5	1.5 B	25.0
	821 70										
HARD brown SANDY LOAM	021.70		16	4.0	11.0	SOFT gray SILTY CLAY LOAM	-	¥	1	0.0	20.0
	820.20		9	4.0 P	11.0		-		3	0.3 B	29.0
		-5					799.70	-25			
MEDIUM tan SANDY LOAM		_	3	0.8	10.0	LOOSE tan dirty moist SAND	-	_	2		
	817.70		7	Р			-		3		
	-						797.20				
GRAVEL	-		4	1.0	13.0	MEDIUM tan SANDY LOAM TILL	-		1	0.6	10.0
	815.20 _		10	Р			795.20 _		4	Р	
	-	-10					-	-30			
LOAM			5	2.5	23.0	with SAND lens		-	1 5	0.8	9.0
	812.70	-	7	В			792.70	_	9	Р	
VERY STIFF brown SILTY CLAY	-		3				-	_	10		
LOAM	-		7	2.9	21.0	with GRAVEL	-		17		9.0
	810.20 _		11	В			790.20 _		20		
VERY STIFF gray SILTY CLAY	_	-15	5			VERY DENSE tan SANDY LOAM	-	-35	18		
	-		8	3.5	18.0	TILL with GRAVEL	_		26		
	807.70			D			787.70		33		
VERY STIFF gray SILTY CLAY			5			VERY DENSE tan GRAVEL		-	100/2"		
LOAM	805 205	, —	7 9	2.5 P	22.0	Hard Drilling	-				
	ous.20 <u>√</u>	_					/85.20 _				
		-20						-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois De	epart	me	ent		SC		ç	Page	<u>2</u>	of <u>2</u>
Division of Highways Illinios Department of Tra	nsportation/	D-2		P	92-111	-06 Mulford Road Bridge over US 20		Date	7/2	28/08
ROUTE FAP 301	DE	SCR	IPTIO	N	Вураз	ss, .25 m. S. of Sandy Hollow Road	LOG	GED B	r <u>W. (</u>	Garza
SECTION(201-3) K (4-1,-	5) K	I	LOCA		Cherr	y Valley Twp 9 NE, SEC., TWP.43N	N, RNG.2	E		
COUNTY Winnebago	RILLING	g me	THO	D	Но	Ilow Stem Auger HAMMER T	YPE B-5	3 Diedri	ch Aut	omatic
STRUCT. NO. Station BORING NO. BORING NO. Boriton 48+70 Offset 15.00ft Rt CL Ground Surface Flay 824 20		D E P T H	B L O W S	U C S Qu (tsf)	M O I S T	Surface Water Elev. Stream Bed Elev. 77.00 Groundwater Elev.: First Encounter 801.7 Upon Completion 805.2	ft D ft P T ft ▼ H ft ⊽ (ff	B L O W S	U C S Qu (tsf)	M O I S T (%)
DENSE tan SANDY LOAM TILL	<u> </u>		25			VERY DENSE tan fine SAND		30	(,	
	782.70		19 11			End of Boring		100/11	1	
STIFF gray SANDY LOAM TILL	780.20		4 11 15	1.6 B	8.0					
VERY STIFF gray SANDY LOAM TILL with GRAVEL	777.70	45	6 9 12	2.5 S	8.0		6 	5		
STIFF gray SANDY LOAM TILL	774 70		5 9 10	1.5 B	10.0			-		
MEDIUM gray fine SAND with medium GRAVEL	772.70	-50	2 6 23				7 			
DENSE gray fine SAND	- 770.20		12 17 19							
VERY DENSE tan SAND with GRAVEL	- 767.70	-55	42 100/7"				7 	-		
VERY DENSE tan SANDY LOAM TILL with SANDY GRAVEL lens	- - 765.20	1	29 00/9'							
		-60					-8			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois De of Transpo Division of Highways	partment ortation	S	OIL BORING LO	Page <u>1</u> of <u>2</u>
	DESCRIPT		111.00 Mulfard Deed aver Durane O	
		IUN <u>P92</u>	-111-06 Multord Road over Byapss 20	<u>J</u> LOGGED BY <u> W. Garza</u>
SECTION(201-3)K & 4-1,	<u>5)K</u> LOC	CATION _Che	erry Valley Twp 10NW, SEC. , TWP. 4	3N, RNG. 2E
COUNTY Winnebago E	ORILLING METHO	DD	Hollow Stem Auger HAMMER	CME-55
STRUCT. NO.	Latitude	e <u>42° 13'</u> ide <u>-88° 59</u>	11.65" Northing ' 54.20" Easting	2,024,824.8893 2,613,032.2599
BORING NO. B-4g Station 2606+77 Offset 117.00ft Rt Ground Surface Elev. 802.00	D H E H P (0 T V H S D ft (ff) (///	B U M L C C O S I W S S Qu T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter 793.0 Upon Completion 768.0	$ \begin{array}{c cccc} ft & D & B & U & M \\ ft & E & L & C & O \\ P & O & S & I \\ T & W & S \\ ft & \Psi & H & S & Qu & T \\ ft & \Psi & (ft) & (fcf) & (fcf) & (%) \\ \end{array} $
MEDIUM brown SILTY CLAY			DENSE, VERY STIFF tan SANDY	24 P
	800.50	0.7 23 P	0 LOAM TILL (continued)	781.00
STIFF TAN SILTY CLAY LOAM	799.00	3 1.5 28 3 B	.0	13 29 18
SOFT tan LOAM with SAND, medium GRAVEL lens	-5	1 2 0.4 25	VERY DENSE tan fine SAND	
	796.00			776.50 43
LOOSE tan dirty SANDY GRAVEL	793.50) 1 3	MEDIUM/DENSE tan very fine SAND	
MEDIUM tan SANDY LOAM TILL	 	1 3 0.5 11 4 B	DENSE tan fine SAND with CLAY	3 3018 17
STIFF tan SANDY LOAM TILL		2 2.0 10	VERY STIFF gray SANDY LOAM 0 TILL with SAND lens	10 14 3.7 9.0
DENSE, No Recovery, assume as	789.00 2	2	HARD gray LOAM TILL	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	_ <u>-15</u> 1 786.50 2	7 2	_	766.50 <u>-35</u> 15 6.0 12.0 25 S
DENSE, No Recovery, assume as above.	784.00 2	1 2 2	HARD gray LOAM TILL with ORGANICS	12 16 5.9 12.0 764.00 21 S
DENSE, VERY STIFF tan SANDY		3 0 2.8	HARD gray LOAM TILL	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROUTE	ют FAI 39 & FAP 301	DE	SCRI	IPTION		<u>P92-1</u>	11-06 Mulford Road ove	er Byapss 20	L(oggi	ED BY	2/1 	<u>7716</u> Garza
	(201-3)K & 4-1,5	5)K	l	LOCAT		Cherr	/ Valley Twp 10NW, S	EC. , TWP. 43	N, RNC	G. 2E			. <u></u>
COUNTY	Winnebago DI	RILLING	MET	THOD		Hc	llow Stem Auger	HAMMER T	YPE		СМ	E-55	
STRUCT. NO.			Latit Lono	ude gitude	<u>42°</u> 88	<u>' 13' 1′</u> ° 59' 5	4.20"	Northing Easting	2,02	4,824 3,032	1.8893 2.2599		
BORING NO. Station Offset Ground Surfa	<u>B-4g</u> 2606+77 117.00ft Rt ace Elev. <u>802.00</u>	ft	D E P T H (ff)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	793.0 768.0	ft ft ft ft ⊻ ft ⊻ ft	D E P T H	B L O W S (/6'')	U C S Qu (tsf)	M O I S T (%)
IARD gray L(continued) /ERY DENSE /ILL	DAM TILL E gray SANDY LOAM	761.50		23 19 60 26	S		· · · · · · · · · · · · · · · · · · ·						
/ERY DENSE OAM TILL	light gray SANDY	756.00	 	23 100/8''	- - -	· · · · · · · · · · · · · · · · · · ·		•	738.00	65			•
ERY DENSE IMESTONE	E light gray weathered	754.00		26 32 29					722.00				
/ERY DENSE IMESTONE	E light gray weathered		-50	25 27 67		-	No Refusal to 74.0'			-70			
		748.00					End of Boring		728.00		- -		
			55	· · · · · · · · · · · · · · · · · · ·									
		743.00		-									

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois E of Trans	Department portation	S	OIL BORIN	G LOG	Page <u>1</u> of <u>1</u>
ROUTE FAL39 & FAP 3		N P92-1	111-06 Mulford Road ov	er Byanss 20	Date <u>5/19/16</u>
SECTION (201 2)K 8					
		(110N <u>, 5EC</u>	., IWP., RNG.		
COUNTY Winnebago)	Shelby	_ HAMMER TYPE	Shelby
STRUCT. NO.	Latitude Longitud	9		Northing Easting	
Station	D B	U M	Surface Water Elev.	ft ft	
BORING NO.B-4g ShellStation2606+50Offset75.00ft RGround Surface Elev.80	$\begin{array}{c} E \\ P \\ 0 \\ \hline t \\ 1.60 \end{array} ft \\ H \\ (ft) \\ (ft$) (tsf) (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	ft ft ft	
25" Recovery			· · · · · · · · · · · · · · · · · · ·		
16" Recovery	 799.10 		_		
21" Recovery	796.60 -5		-	. •	
22" Recovery	794.10		-		
30" Recovery	791.60 -10				
Lifted Truck @ 14' Pushed 20"	789.10		_		
	786.60 · -15				
End of Boring					· .

 $\mathcal{P}_{\mathcal{G}_{i}}^{\mathcal{G}_{i}}$

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

B Sta, 48+86	4g 6, 60' I 72016	۶ <i>T</i>		
02/11/	<u>N</u>	<u>Qu</u>	<u>w%</u>	
002.0-	6	0.7P 1.5B	23.0 28.0	MEDIUM brown SILTY CLAY LOAM STIFF tan SILTY CLAY LOAM
796.0-	5	0.4P	25.0	SOFT tan LOAM with SAND, medium GRAVEL lens
703 5 57	4			LOOSE tan dirty SANDY GRAVEL
793.0 DD	7	0 . 5B	11.0	MEDIUM tan SANDY LOAM TILL
	10	2.0P	10.0	STIFF tan SANDY LOAM TILL
	39			DENSE, No recovery, assume as above.
	34			DENSE, No recovery, assume as above.
781.0-	34	2.8P		DENSE, VERY STIFF tan SANDY LOAM TILL
101.0	47			DENSE tan fine SAND
	84			VERY DENSE tan fine SAND
	30			MEDIUM/DENSE tan very fine SAND
7710	35			DENSE tan fine SAND with CLAY lens
Oh V	35	3. 7S	9.0	VERY STIFF gray SANDY LOAM TILL with SAND lens
768.0	40	6.0S	12.0	HARD gray LOAM TILL
	37	5.95	12.0	HARD gray LOAM TILL with ORGANICS
	68	4. 8S	10	HARD gray LOAM TILL
	86			VERY DENSE gray SANDY LOAM TILL
756 0	10078	3"		VERY DENSE light gray SANDY LOAM TILL
730.0	61			VERY DENSE light gray weathered LIMESTONE
	94			VERY DENSE light gray weathered LIMESTONE
748.0-				
743.0-				
738.0-				
733.0-				No Refusal to 74.0'
728.0				Bottom of Hole = 74.0 feet

B-4g	Shelby			
Sta. 49+2	7. 32' F	T7		
05/19	/2016			
901 C	N	<u>Qu</u>	<u>w%</u>	
001.0-				SILTY CLAY LOAM
		3.54	21	SILTY CLAY
			8	GRAVELLY SAND
			20 C	SILTY CLAY (LL=49 PI=30)
		1.18	25 C	SILTY CLAY (LL=40 PI=21)
			11	
		0.61	31	SILTY CLAY
				SILTY CLAY LOAM
		0.25	20	SANDY LOAM
				SANDY LOAM
		0.15	15	SANDY LOAM
786 6				Lifted Truck @ 14', Pushed 20".
,00.0-				Bottom of Hole = 15.0 feet

FILE NAME =	USER NAME =	DESIGNED -	RGC	REVISED			F.A.U.	SECTION	COUNTY	TOTAL SHEET
		CHECKED -	- JLD REVISED STATE OF ILLINOIS		5147	(201-3)K & (4-1.5)R	WINNEBAGO			
PLOT SCALE =	PLOT SCALE =	DRAWN -	EJM	REVISED	DEPARTMENT OF TRANSPORTATION	STRUCTURE NU. 101-0207			CONTRACT	T NO.
Copyright Hanson Professional Services Inc. 2016	PLOT DATE = 08/11/16	CHECKED -	ККС	REVISED		SHEET NO. 1 OF 2 SHEETS		ILLINOIS FED. AI	D PROJECT	

<u>LEGEND</u>

N Standard Penetration Test N (blows/ft) Qu Unconfined Strength (tsf) w% Natural Moisture Content (%) C Consolidation Test DD 507.20 Water Surface Elevation Encountered in Boring DD = during drilling Oh = at completion 24h = 24 hours after completion Approximate Finish Grade

----- Bottom of Footing

B- Sta. 48+7	3g 3, 34' LT 7///////		
07728	/2008 <u>N Qu w%</u>		
824.2-		Shoulder	-
	20 4.0P 11.0	HARD brown SANDY LOAM	
	11 0.8P 10.0	MEDIUM tan SANDY LOAM	
	21 1.0P 13.0	STIFF tan SANDY LOAM with GRAVEL	
	12 2.5B 23.C	VERY STIFF brown SILTY CLAY LOAM	
	18 2.9B 21.0	VERY STIFF brown SILTY CLAY LOAM	
	19 3.5B 18.0	VERY STIFF gray SILTY CLAY	0
0h 805.2 ──	16 2.5P 22.0	VERY STIFF gray SILTY CLAY LOAM	ם Sta. 50+ 17/2
	8 1.5B 25.0	STIFF gray SILTY CLAY LOAM	803.7
801.7 <u> </u>	4 0.3B 29.0	SOFT gray SILTY CLAY LOAM	-
797 2-	5	LOOSE tan dirty moist SAND	
131.2	7 0.6P 10.0	MEDIUM tan SANDY LOAM TILL	
	14 0.8P 9.0	MEDIUM tan SANDY LOAM TILL with SAND lens	793.7 V
	37 9.0	DENSE tan SANDY LOAM TILL with GRAVEL	790 7 - V
	59 100/2"	VERY DENSE tan SANDY LOAM TILL with GRAVEL VERY DENSE tan GRAVEL Hard Drilling	150.1
	30	DENSE tan SANDY LOAM TILL	
	26 <i>1.6B</i> 8.0	STIFF gray SANDY LOAM TILL	
	21 2.55 8.0	VERY STIFF gray SANDY LOAM TILL with GRAVEL	779.2
774 7 -	19 1.5B 10.0	STIFF gray SANDY LOAM TILL	776.7
	29	MEDIUM gray fine SAND with medium GRAVEL	774.7
	36	DENSE gray fine SAND	
	100/7"	VERY DENSE tan SAND with GRAVEL	
	100/9"	VERY DENSE tan SANDY LOAM TILL with SANDY GRAVEL lens	
7627-	100/11"	VERY DENSE tan fine SAND	
102.1 -		Bottom of Hole = 61.5 feet	

B- Sta. 50+12 07/27	2g 2, 84′ L /2008			
803.7 _	<u>N</u>	<u>Qu</u> <u>w%</u>		
		0.5P 18.0	MEDIUM brown SILTY CLAY LOAM	
	11	1.5B 26.0	STIFF tan SILTY CLAY LOAM	
	8	0.8P 17.0	MEDIUM brown SANDY LOAM	
	11	14.0	MEDIUM tan dirty SAND	DD 793.2
лээ.л — Ов	7	11.0	LOOSE tan dirty SAND	
790.7 🗸	56	9.0	VERY DENSE tan SANDY LOAM TILL with GRAVEL	
	58		VERY DENSE tan SANDY LOAM TILL with GRAVEL	
	60		VERY DENSE tan SANDY LOAM TILL with GRAVEL	
	50		VERY DENSE tan SANDY LOAM TILL with GRAVEL	781.2
779.2-	51		VERY DENSE light brown fine SAND	
770 7	67	13.0	VERY DENSE gray CLAY LOAM	776.7
774.7	79		VERY DENSE gray clean medium SAND Bottom of Hole = 29.0 feet	

FILE NAME =	USER NAME =	DESIGNED - RGC	REVISED		SUBSURFACE DATA PROFILE	F.A.U. RTE.	SECTION	COUNTY	TOTAL S	HEET NO.
		CHECKED - JLD	REVISED	STATE OF ILLINOIS		5147 0	(201-3)K & (4-1.5)R	WINNEBAGO		-
	PLOT SCALE =	DRAWN - EJM	REVISED	DEPARTMENT OF TRANSPORTATION	STRUCTURE NU. 101-0207			CONTRACT	NO.	
C Copyright Hanson Professional Services Inc. 2016	PLOT DATE = 08/11/16	CHECKED - KKC	REVISED		SHEET NO. 2 OF 2 SHEETS		ILLINOIS FED. A	ID PROJECT		

B· Sta. 51+5	-1g 9,65′L	. <i>T</i>	
7//25	N 2008	QU w%	
825.7 -	_	0.3P 14.0	SOFT brown SANDY LOAM
	3	0.3P 15.0	SOFT tan/brown SANDY LOAM
	18	4.5P 8.0	HARD tan SANDY LOAM TILL
	18	2.4B 21.0	VERY STIFF brown/gray CLAY LOAM
	16	4.5P 9.0	HARD tan SANDY LOAM TILL
	14	11.0	tan SANDY LOAM with large piece of GRAVEL in nose
	15	2.4B 20.0	VERY STIFF brown/gray CLAY LOAM
	11	3.1B 22.0	VERY STIFF brown/gray CLAY LOAM
	18	3.5B 19.0	VERY STIFF brown/gray CLAY LOAM with ORGANICS
	16	3.3B 21.0	VERY STIFF dark gray SILTY CLAY LOAM
	10	1.3B 28.0	STIFF dark gray SILTY LOAM
	7	1.2B 25.0	STIFF gray CLAY LOAM
	9	1.0P 21.0	MEDIUM gray/brown CLAY LOAM with SAND lens
793.2 —	13	0.65 9.0	MEDIUM tan SANDY LOAM TILL
	27	2.3P 9.0	VERY STIFF tan SANDY LOAM TILL
	45	8.0	
	103		HARD tan SANDY LOAM TILL
	100/9	1.11	HARD tan SANDY LOAM TILL
781.2-	56 100/2	s <i>II</i>	VERY DENSE brown dirty coarse SAND & GRAVEL VERY DENSE tan dirty SAND & GRAVEL
776.7 -			Bottom of Hole = 49.0 feet

<u>LEGEND</u>

N Standard Penetration Test N (blows/ft) Qu Unconfined Strength (tsf) w% Natural Moisture Content (%) DD 507.20 Water Surface Elevation Encountered in Boring DD = during drilling Oh = at completion 24h = 24 hours after completion

Approximate Finish Grade ----- Bottom of Footing

SLOPE STABLITY

EXHIBIT E

EXHIBIT F

PILE LENGTH TABLES AND CALCULATIONS

Pile Capacity

Metal Shell 12"Φ w/ 0.25" Walls

Substructure Unit	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
South Abutment B-3g	392	216	31	820.29
Pier 1 392 B-2g		216	19	802.01
North Abutment 392 B-1g		216	33	820.25

Metal Shell 14"Φ w/ 0.25" Walls

Substructure Unit	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
South Abutment B-3g	459	252	31	820.29
Pier 1 B-2g	459	253	18	802.01
North Abutment 459 B-1g		252	32	820.25

Metal Shell 14"Φ w/ 0.312" Walls

Substructure Unit	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
South Abutment B-3g	570	313	31	820.29
Pier 1 B-2g	570	313	21	802.01
North Abutment 570 B-1g		313	33	820.25

Metal Shell 16"Φ w/ 0.312" Walls

Substructure Unit	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
South Abutment B-3g	654	360	31	820.29
Pier 1 654 B-2g		360	20	802.01
North Abutment 654 B-1g		360	33	820.25

SUBSTRUCTURE====================================	South Abu	tment
REFERENCE BORING ====================================	B-3g	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	820.29	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	818.29	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ============	==	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	=====	ft
TOTAL FACTORED SUBSTRUCTURE LOAD ===========	1215	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	42.83	ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======	2	

 Approx. Factored Loading Applied per pile at 8 ft. Cts
 113.47 KIPS

 Approx. Factored Loading Applied per pile at 3 ft. Cts
 42.55 KIPS

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
392 KIPS	360 KIPS	198 KIPS	31 FT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL			NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.		BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
816.20	2.09	0.80			6.1		14.7		15	0	0	8	4
814.20	2.00	1.00			7.0	8.6	34.6		35	0	0	19	6
811.70	2.50	2.50			16.6	21.5	54.6		55	0	0	30	9
809.20	2.50	2.90			18.4	25.0	78.1		78	0	0	43	11
806.70	2.50	3.50	19		21.1	30.2	90.6		91	0	0	50	14
804.20	2.50	2.50			16.6	21.5	98.5		99	0	0	54	16
801.70	2.50	1.50			11.8	12.9	100.0		100	0	0	55	19
799.70	2.00	0.30			2.4	2.6	124.5		125	0	0	68	21
797.20	2.50		5	Medium Sand	3.6	24.7	108.6		109	0	0	60	23
794.20	3.00	0.60			6.8	5.2	117.1		117	0	0	64	26
791.70	2.50	0.80			7.3	6.9	254.7		255	0	0	140	29
789.20	2.50		37	Very Fine Silty Sand	23.9	137.2	360.1		360	0	0	198	31
786.70	2.50		59	Very Fine Silty Sand	48.3	218.8	684.1		684	0	0	376	34
784.20	2.50		100	Sandy Gravel	278.1	494.4	579.0		579 500	U U U U U U U U U U U U U U U U U U U	U U	318 275	30 20
701.70	2.50	1.60	30	Very Fine Silty Sand	12.0	12.9	520.2		520	,	0	270	
776 70	2.50	2.50			16.6	21.5	520.5		529	0	¢	201	44
774 70	2.00	2.50			9.5	12.0	668 1		668	0	0	367	46
771 70	3.00	1.50	20	Sandy Gravel	36.0	1/3/	738.8		730	0	0	406	49
769.20	2.50		36	Fine Sand	26.4	178.0	1081 6		1082	۵ ۵	۵ ۵	595	51
766 70	2.50		100	Medium Sand	163.8	494.4	1245 3		1245	Δ	۵ ۵	685	54
764 20	2.50		100	Medium Sand	163.8	494.4	1409.1		1409	Ω.	д Д	775	56
762 70	1.50		100	Fine Sand	100.0	494.4				, in the second s	, in the second s		
. 02.10				i ilo calla									

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

SUBSTRUCTURE====================================	Pier 1	
REFERENCE BORING ====================================	B-2g	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	802.01	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	800.01	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	=====	ft
TOTAL FACTORED SUBSTRUCTURE LOAD ==========	3231	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	42.83	ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======	2	
Approx. Factored Loading Applied per pile at 8 ft. Cts ===		301.75

PILE TYPE AND SIZE ===== Metal Shell 12"Ф w/.25" walls Pile Perimeter====== 3.142 FT

Pile End Bearing Area===============================0.	.785	SQFT.

вот. FACTORED FACTORED NOMINAL OF UNCONF. S.P.T. GRANULAR NOMINAL GEOTECH. GEOTECH. FACTORED ESTIMATED LAYER LAYER COMPR. N OR ROCK LAYER SIDE END BRG. TOTAL REQ'D LOSS FROM LOSS LOAD RESISTANCE PILE VALUE (BLOWS) RESIST. (KIPS) FROM DD (KIPS) AVAILABLE (KIPS) ELEV. тніск. STRENGTH DESCRIPTION RESIST. RESIST. BEARING SCOUR or DD LENGTH (TSF.) (KIPS) (KIPS) (KIPS) (FT.) (FT.) (FT.) (KIPS) 798 70 1.31 1.50 6.2 13.1 13 0 0 7 3 796.20 2.50 0.80 7.3 6.9 47.8 48 0 0 26 6 793.70 2.50 11 Very Fine Silty Sand 6.8 34.3 46.2 46 0 0 25 8 Very Fine Silty Sand Very Fine Silty Sand 791.20 2.50 7 4.3 26.0 232.2 232 0 0 128 11 56 58 60 788.70 2.50 44.2 207.7 283.8 284 0 0 156 13 Very Fine Silty Sand Very Fine Silty Sand 2.50 2.50 786 20 46.9 215 1 338.2 338 0 0 186 16 783.70 49.7 222.5 350.8 351 0 0 193 18 250 269 781.20 2.50 50 51 Very Fine Silty Sand 36.8 185.4 454.3 21 23 454 θ Ð 779.20 2.00 Fine Sand 37.9 252.1 488.5 488 Ð Ð 776.70 774.70 2.50 2.00 67 Hard Till 41.0 248.4 671.7 672 Ð Ð 369 25 Medium Sand 79 390.6

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
392 KIPS	351 KIPS	193 KIPS	18 FT.

SUBSTRUCTURE====================================	North Abut	ment
REFERENCE BORING ====================================	B-1g	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	820.25	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	818.25	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	=====	ft
TOTAL FACTORED SUBSTRUCTURE LOAD =========	1547	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	42.83	ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======	2	

Approx. Factored Loading Applied per pile at 8 ft. Cts ========144.48 KIPSApprox. Factored Loading Applied per pile at 3 ft. Cts ========54.18 KIPS

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
392 KIPS	345 KIPS	190 KIPS	32 FT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL			NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)		BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
815.70	2.55	2.40	()		16.4	(55.2		55	0	0	30	5
813.20	2.50	4.50	16		25.6	38.8	93.9		94	0	0	52	7
810.70	2.50		14	Very Fine Silty Sand	8.7	51.9	71.3		71	0	0	39	10
808.20	2.50	2.40	11		16.1	20.7	93.5 116 2		93	0	0	51	12
803.20	2.50	3.50	18		21.1	30.2	135.5		135	0	0	75	17
800.70	2.50	3.30	16		20.2	28.4	138.4		138	0 0	Ő	76	20
798.20	2.50	1.30			10.7	11.2	148.3		148	0	0	82	22
795.70	2.50	1.20			10.1	10.3	156.6		157	0	0	86	25
793.20	2.50	1.00			8.7	8.6	161.9		162	0	0	89	27
790.70	2.50	0.60			5.0 15.7	5.2	182.2		182	0	0	100	30
785.70	2.50	2.50	45	Very Fine Silty Sand	31.3	166.9	591.3		591	0	0	325	35
783.20	2.50		103	Very Fine Silty Sand	126.0	381.9	706.2		706	Ð	Ð	388	37
781.20	2.00		100	Very Fine Silty Sand	96.4	370.8	708.6		709	Ð	0	390	39
776.70	2.50		56	Sandy Gravel	115.0	276.9	1041.1		1041	Ð	Ð	5/3	42
110.10	2.00		100	Sandy Graver		494.4							

EXHIBIT G

LAB TEST DATA

SUMMARY OF LABORATORY TEST RESULTS

Project: Ramp BD North, Ramp BD South, Perryville, MulfordClient: WBKWang Job: 412-04-10

SAMPLE	E IDENTIF	ICATION	1						LABORATORY	TESTS AND	SOIL CLASSIF	ICATION	
Site	Boring	Sample	Top Depth	Water Content AASHTO T265 w	r T LL	Limits Limits AASHTC 89 & T9 PL	g 0 PI	Visual Soil Classification IDOT 1999 IDH	Unconfined Compressive Strength AASHTO T208 q _u	Or (Cc	ne-Dimension Consolidation AASHTO T216 Cs	al OCR	σ ₁
			ft	%	%	%	%		tsf				psi
Mulford	B-4g	ST-2a	2.5	8				GRAVELLY SAND	NA				
Mulford	B-4g	ST-2b	3.5	20	49	19	30	SILTY CLAY		0.129	0.042	6.32	
Mulford	B-4g	ST-3a	5.0	25	40	19	21	SILTY CLAY	1.18	0.211	0.045	2.61	
Mulford	B-4g	ST-3b	6.0	11									
Mulford	B-4g	ST-4a	7.5	31				SILTY CLAY	0.61				
Mulford	B-4g	ST-4b	8.5					SILTY CLAY LOAM					
Mulford	B-4g	ST-5a	10.0	20				SANDY LOAM	0.25				
Mulford	B-4g	ST-5b	11.0					SANDY LOAM					
Mulford	B-4g	ST-6a	12.5	15				SANDY LOAM	0.15				
Mulford	B-4g	ST-6b	13.5					SANDY LOAM					
Perryville	B-6e	ST-1a	0.0					SANDY LOAM					
Perryville	B-6e	ST-1b	1.0	22				SILTY CLAY	1.58				
Perryville	B-6e	ST-2a	2.5	24	42	19	23	SILTY CLAY		0.197	0.063	3.08	
Perryville	B-6e	ST-2b	3.5					SILTY CLAY					
Perryville	B-6e	ST-3a	5.0	20				SILTY CLAY	1.03				

Prepared by: C. lordache Checked by: L. lordache Date: 8/1/2016

	UU Tr Compr AAS T2	riaxial ression HTO 96		
S _u	σ_1	S _u	σ_1	S _u
tsf	psi	tsf	psi	tsf

1959 psf

ONE-DIMENSIONAL CONSOLIDATION TEST AASHTO T 216 / ASTM D 2435

Project: SN 101-0207,]	Mulford	Tested by: M. Snider		
Client: Wills, Burke, I	Kelsey & Associates	Prepared by: M. Snider		
Soil Sample ID: Boring B-4g, S	ST#3, 5 to 7.5 feet	Test date: 7/14/2016		
Sample Description: Brown and gra	ay SILTY CLAY	WEI: 412-04-10		
Initial sample height =	1.000 in	Ring diameter =	2.495 in	
Initial sample mass =	154.09 g	Ring mass =	109.54 g	
Initial water content =	25.26%	Initial sample and ring mass =	263.63 g	
Initial dry unit weight =	95.87 pcf	Tare mass =	84.94 g	
Initial void ratio =	0.757	Final ring and sample mass =	259.32 g	
Initial degree of saturation =	90.04%	Mass of wet sample and tare =	234.36 g	
		Mass of dry sample and tare =	207.96 g	
Final sample mass =	149.42 g	Initial dial reading =	0.01000 in	
Final dry sample mass =	123.02 g	Final dial reading =	0.13531 in	
Final water content =	21.46%	LL=	40 %	
Final dry unit weight =	109.61 pcf	PL=	19 %	
Final void ratio =	0.537	% Sand=	n.a. %	
Final degree of saturation =	100.00%	% Silt=	n.a. %	
Estimated specific gravity =	2.70	% Clay=	n.a. %	
		In-Situ Vertical Effective Stress =	750 psf	
Compression and Swell	ling Indices			

tion pressure,s _C	Preconsolidation	0.200	Compression index $C_c =$
d = 1959	Casagrande Method =	0.211	Field corrected $C_c =$
k) = 2.61	Over-Consolidation Ratio (OCR) =	0.045	Swelling index $C_s =$

	Swellin	g index $C_s =$	0.045		Over-Consolidation Ratio (OCR) =		2.61	
Load number	Vertical stress	Dial reading	System deflection	Vertical strain	Void ratio	C _v	Cae	Elapsed time
	psf	in	in	%		ft²/day	%	min
1	100.0	0.01023	0.00010	0.03	0.757	N/A	N/A	480
2	200.0	0.01195	0.00023	0.22	0.753	0.1851	0.05	960
3	500.0	0.01765	0.00058	0.82	0.743	0.2816	0.15	1412
4	1000.0	0.02671	0.00090	1.76	0.726	0.2688	0.05	480
5	2000.0	0.04036	0.00135	3.17	0.702	0.2589	0.16	960
6	4000.0	0.06711	0.00193	5.90	0.654	0.2385	0.25	831
7	8000.0	0.10022	0.00253	9.27	0.594	0.1866	0.32	523
8	16000.0	0.13367	0.00324	12.69	0.534	0.1752	0.26	960
9	32000.0	0.16697	0.00413	16.11	0.474	0.1490	0.30	960
10	8000.0	0.16603	0.00295	15.90	0.478	N/A	N/A	960
11	2000.0	0.15622	0.00198	14.82	0.497	N/A	N/A	480
11	500.0	0.13676	0.00123	12.80	0.532	N/A	N/A	1200

Prepared by: Date	2:
-------------------	----

Checked by: _____ Date: _____

CONSOLIDATION COEFFICIENT (Cv) vs. VERTICAL STRESS

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Project: SN 101-0207 Mulford Client: Wills, Burke, Kelsey Associates WEI Job No.: 412-04-10 Soil Sample ID: B-4g, ST#3a, 5.0 to 6.5 feet Type/Condition: ST/ Undisturbed Liquid Limit (%): 40 Plastic Limit (%): 19 Average initial height $h_0 = 6.09$ in Average initial diameter $d_0 = 2.87$ in Height to diameter ratio= 2.12

Mass of wet sample = 1299.82	g
Mass of dry sample and tare = 1091.31	g
Mass of tare $= 13.76$	g

Specific gravity = 2.76	(estimated)
-------------------------	-------------

Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)
Δh	F	e	s
0.00	0.00	0.00	0.00
0.03	24.89	0.49	0.28
0.06	41.48	0.99	0.46
0.09	57.04	1.48	0.63
0.12	66.37	1.97	0.73
0.15	74.66	2.46	0.81
0.18	82.96	2.96	0.90
0.21	89.18	3.45	0.96
0.24	95.40	3.94	1.02
0.27	97.48	4.43	1.04
0.30	99.55	4.93	1.06
0.35	105.77	5.75	1.11
0.40	107.85	6.57	1.12
0.45	112.00	7.39	1.16
0.50	114.07	8.21	1.17
0.55	116.14	9.03	1.18
0.60	117.18	9.85	1.18
0.65	117.18	10.68	1.17
0.70	117.18	11.50	1.16
0.80	117.18	13.14	1.14
0.90	117.18	14.78	1.11
1.00	97.48	16.42	0.91

NOTES:

Prepared by: _____

Date:

Checked by: _____

Date: ____

Test date: 7/14/2016 Sample description: Brown & Gray SILTY CLAY Sand(%): NA Silt(%): NA Clay(%): NA Initial water content w = 20.63%(specimen)

Analyst name: A. Mohammed

Date received: 6/3/2016

Initial unit weight $g = 126.03$	pcf	
Initial dry unit weight $g_d = 104.48$	pcf	
Initial void ratio $e_0 = 0.65$		
Initial degree of saturation $S_r = 88\%$		
Average Rate of Strain= 1%/min		
Unconfined compressive strength $q_u = 1.18$	tsf	
Shear Strength= 0.59	tsf	

AR