

208 East Main Street Suite 100 Belleville, Illinois 62220 618.233.5877 phone 618.233.5977 fax

Geotechnical Design Memorandum

Date: October 12, 2022

- To: Mr. Andrew Keaschall, P.E., S.E.,VMA Senior Vice President Benesch 35 W. Wacker Drive, Suite 3300 Chicago, IL 60601
- From: Matt D. Masterson, P.E.
- RE: I-39/US 20 Ramp BD F.A.I. Route 39 Section (201-3)K & (4-1,5)R S.N. 101-0215 Winnebago County, Illinois Job No. D-92-064-19 KEG No. 19-1138.00

1.0 INTRODUCTION

The geotechnical study summarized in this design memo was performed for the proposed bridge replacement F.A.I. 39 (I-39) Ramp BD over US-20 in Winnebago County, Illinois. See Exhibit A, Location Map. The purpose of this memo is to present supplemental design and construction recommendations for the proposed three-span structure.

Prior designs by others have been considered for this structure, as summarized in the original abbreviated Structure Geotechnical Report (SGR) completed by Hanson Professional Services, Inc. (Hanson), titled, *FAI Route 39 – Section (201-3)K & (4-1,5)R, Winnebago County, Illinois*, dated Revised April 2017.

2.0 PROJECT DESCRIPTION

Based on the approved Type, Size, and Location Plan (TS&L), Exhibit C, developed by Hanson, a new three-span structure is planned as a replacement for the existing three-span bridge of I-39 over the US-20. Foundations are currently anticipated to be pile supported stub abutments and straddle-bent piers. The proposed U-shaped MSE walls that the abutments will be built on will wrap around the abutments and extend out past the limits of the bridge. The new Ramp BD

alignment will be built with a 65° -27'-44" skew relative to US 20. The proposed centerline stations are 2581+12.79 (US-20) and Station 147+59.66 (I-39). The overall length is 484 ft. – 0 in., back-to-back of abutments, and the width is 54 ft. - 10 in., out to out.

The existing structure (SN 101-1036), constructed in 1981, consists of a three-span concrete deck supported by curved steel girders, on pile bent concrete abutments, with piers supported on pile foundations. The existing structure has a length of 397 ft.-8.5 in., back-to-back of abutments, a deck width of 28'-0", with a skew of 56°-25'-55".

3.0 SUBSURFACE EXPLORATION AND GENERALIZED SUBSURFACE CONDITIONS

Recommendations provided in this design memo are based on eight (8) supplemental borings obtained by the Illinois Department of Transportation (IDOT) District 9 in 2020, including two Shelby Tube borings. Additional borings obtained in 2016 and utilized in the Abbreviated SGR dated April 2017, were also given cursory review as part of our analysis. The locations of the supplemental borings are shown on Exhibit B, Boring Plan. The locations of the existing borings are shown on the TS&L, Exhibit C.

Designation	Boring Depth (ft.)	Station	Offset
B-1i	41.0	143+50	11.0 RT
B-2i	39.5	144+00	11.0 RT
B-4i	36.0	144+65	24.0 LT
B-5iST	36.0	144+25	43.0 LT
B-5iSTa*	24.5	144+25	43.0 LT
B-13i	35.5	149+39	0.0 CL
B-14iST	30.5	149+75	11.0 RT
B-14iSTb*	17.0	149+75	11.0 RT

Table 3.0 - Boring Depth and Location

*Shelby Tube Borings

The overburden soils were predominantly medium-stiff to stiff silty clays, silty loams, sandy loams, sandy loam tills, or loose-to-dense sands all the way to termination/refusal in weathered limestone. Detailed information regarding the nature and thickness of the soils and rock encountered are shown on the Boring Logs, Exhibit D and Subsurface Profiles, Exhibit E.

3.1 BEDROCK

Elevations of top of limestone for Borings B-2i, B-4i, B-5iST, B-13i, and B-14iST are shown in Table 3.1 below:

Designation	Nearest Substructure Station		Offset	Top of Rock Elevation (ft.)				
B-2i	E Abut	144+00	11.0 RT	781.7				
B-4i	E Abut	144+65	24.0 LT	782.8				
B-5iST	E Abut	144+25	43.0 LT	783.2				
B-13i	W Abut	149+39	0.0 CL	787.2				
B-14iST	W Abut	149+75	11.0 RT	788.6				

Table 3.1 - Elevation of Top of Limestone

4.0 GEOTECHNICAL EVALUATION AND DESIGN RECOMMENDATIONS

4.1 SETTLEMENT

Due to obtaining supplemental borings and the nature of the soils encountered in the borings, additional estimates of settlement with respect to the East and West MSE wall-supported abutment embankments, were necessary. Although the existing soils encountered have most likely consolidated and settled over time in response to the current loading conditions, the proposed new MSE wall-supported abutment configurations will result in potential settlements during and after construction completion.

Borings B-1i, B-2i, B-4i and B-5iST/5iSTa were drilled near the proposed footprint of the East Abutment MSE wall embankment and Borings B-13i and B-14iST/14iSTb were drilled near the proposed footprint of the West Abutment MSE wall embankment.

Boring B-5iSTa was drilled specifically to obtain Shelby tube samples to better estimate the settlement for the East abutment embankment and Boring B-14iSTb was drilled specifically to obtain Shelby tube samples to better estimate the settlement for the West abutment embankment. The consolidation data provided by the IDOT Central Laboratory, from both of these borings, were used to estimate the magnitude and time rate of settlement for the abutment embankments. Settlement was generally estimated to occur within the upper 15 ft. of the existing soils for the East and West Abutments.

The consolidation test data provided specifically, in Table 1 and Table 2 of the IDOT Shelby Tube Test Results Memo, dated July 27, 2021, and all the supporting data, were utilized for review of the settlement of the embankments. See Laboratory Test Results, Exhibit F. The properties provided were used in conjunction with the supplement borings obtained, and the 2016 borings provided in the Abbreviated SGR dated April 2017, at the respective locations.

For the East Abutment embankment, up to approximately 31 ft. of new MSE walls and structural fill were estimated utilizing nominal densities ranging from 120 pcf to 125 pcf for the fill, including the recommended crushed stone fill for uniform support of the MSE walls as recommended in the Abbreviated SGR. For the West Abutment embankment, up to 37 feet of MSE walls and

structural fill were estimated.

4.1.1 EAST ABUTMENT

Beneath the East Abutment embankment fill, the upper 15 feet of existing soils in supplemental Boring B-4i and 2016 Boring B-6i were chosen for a cursory check of the settlement due to proximity to the portion of the embankment comprising the greatest amount of fill estimated within the embankment, from the face of the abutment. Boring B-4i was considered to have a permeable layer and Boring 6i no permeable layer, so both single and double drainage were considered when calculating the time rate of settlement for the East embankment. Groundwater was observed at a depth of 22 ft., approximately El 798.4 in Boring 6i.

Settlement ranging from 4.2 to 4.5 in. was calculated for the East Abutment embankment using the consolidation data obtained in B-5iSTa in conjunction with the same soil types as interpreted in Borings B-4i and B-6i. This settlement included two layers as being slightly to moderately overconsolidated relative to the overburden pressure plus the load from the new fill. The time for 50 percent consolidation (t50) was calculated as ranging from about 1.5 to 4.8 months, and the time for 90 percent consolidation (t90) ranging from 6 to 20 months. Times were also calculated utilizing wick drains on a 5-ft. triangular spacing, assuming that the drains were extended to a maximum depth of 30 ft. below the base of the new fill. With the wick drains, t50 was calculated to range from 18 to 26 days and t90 ranging from 2.6 to 3.6 months. While the wick drains will help to reduce the time for consolidation, they will not reduce the magnitude of settlement.

As such, if about 4.5 in. of settlement is not acceptable for the East Abutment MSE wall-supported embankment, its backfill, or the structures it will support, then ground improvement methods will need to be considered, such as those previously recommended in the Abbreviated SGR, or discussed in Ground Improvement Recommendations, below.

4.1.2 WEST ABUTMENT

Beneath the West Abutment embankment fill, the upper 15 feet of existing soils in supplemental Boring B-13i and 2016 Borings B-11i, B-12i and B-15i were chosen for a cursory check of the settlement due to proximity to the portion of the embankment comprising the greatest amount of fill estimated within the embankment, from the face of the abutment. Borings B-11i, B-12i and B-13i were considered to have a permeable layer and Boring 15i no permeable layer, so both single and double drainage were considered when calculating the time rate of settlement for the South embankment. Groundwater was observed at a depth of 9.5 ft., approximately El 802.2.

Settlement ranging from 1.5 to 4.8 in. was calculated for the West Abutment embankment using the consolidation data obtained in B-14iSTb in conjunction with the same soil types as interpreted in Borings B-11i, B-12i, B-13i and B-15i. This settlement included layers as being normally consolidated in the deeper soils to slightly and moderately over-consolidated in the upper soils relative to the overburden pressure plus the load from the new fill. The time for 50 percent consolidation (t50) was calculated as ranging from about 1.7 to 13.5 months, and the time for 90 percent consolidation (t90) ranging from 7.1 to 56 months. Times were also calculated utilizing wick drains on a 5-ft. triangular spacing, assuming that the drains were extended to a maximum depth of 25 ft. below the base of the new fill. With the wick drains, t50 was calculated to range from 28 days to 1.6 months and t90 ranging from 6 to 6.5 months. While the wick drains will help

to reduce the time for consolidation, they will not reduce the magnitude of settlement.

As such, if about 4.8 in. of settlement is not acceptable for the West Abutment MSE wall-supported embankment, its backfill, or the structures it will support, then ground improvement methods will need to be considered, such as those previously recommended in the Abbreviated SGR, or discussed in Ground Improvement Recommendations, below.

4.2 STABILITY ANALYSIS

A stability analysis using SLOPE/W was performed using the proposed roadway and bridge geometry on the TS&L and soil characteristics from Borings B-13i and B-2i. A short-term scenario was modeled for the steepest proposed undercut slopes for both the West and East Abutments. A critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.3 for slope stability on a short-term basis. The slope stability analyses indicated that the required minimum FOS for all conditions were met.

In order to model the short-term condition, full cohesion and a friction angle of 0 degrees were assumed for all cohesive soils. The Bishop Circular Method, which generates circular-shaped failure surfaces, was used to calculate the critical failure surfaces and FOS for the proposed conditions. The FOS obtained in the analysis is shown in Table 4.2. SLOPE/W program output from this analysis can be found in SLOPE/W Slope Stability Analysis, Exhibit I.

	Critical FOS
Location (1V:1.5H Slope)	
	End-of-Construction
West Abutment (B-13i)	1.4
East Abutment (B-2i) – Left Slope	1.9
East Abutment (B-2i) – Right Slope	1.5

Table 4.2 – Slope Stability Critical FOS

4.3 BEARING RESISTANCE

The foundations supporting the proposed walls and fill embankments must provide sufficient support to resist dead and live loads, including seismic loadings. In our opinion, bearing resistance with respect to the overall project was sufficiently evaluated and discussed in the Abbreviated SGR.

Based on review of the available information, combined with the supplemental information obtained for this addendum, we have reviewed the bearing resistance as it applies to the 235.1-foot long MSE wall supporting the left side of the East Abutment approach from Sta. 144+66.16 to Sta. 142+27.00. Our approach in review of this wall was to see if at least a portion of the wall could be sufficiently supported on new structural fill and/or existing fill near Boring 6i and Boring 7i, without the need for ground improvement, based on its orientation and bearing on the existing south end-slope of the current Ramp bridge alignment.

The allowable bearing resistance, using AASHTO LRFD methods with a Bearing Resistance Factor of 0.5, at the approximate bottom elevation of the wall as it progresses from south to north

(EI. 820 to EI. 841), with an estimated range of cohesion from 700 psf (Boring B-7i) to 2,000 psf (Boring B-6i), was estimated to range from 2,000 psf to 5,350 psf and the applied pressures from the wall and embankment did not exceed this estimated range along the wall.

Depending upon the maximum applied pressures of the wall, the allowable bearing resistance, calculated above, may be exceeded as indicated in the Abbreviated SGR at the taller sections of this wall. Post construction settlements are anticipated because the subsurface materials consist of cohesive materials which will consolidate over time due to the weight of the proposed MSE wall-supported embankments. Our settlement estimates indicate that settlement of 4-inches or less will begin to occur for this MSE wall beginning near Boring 6i (Sta. 143+75) and continuing to be within suitable tolerances to its terminus at Sta. 142+27. Therefore, improvement of the subsurface soils below this proposed section of embankment and MSE wall, utilizing ground improvement from Sta. 143+75 to Sta. 142+27, should not be necessary. A slip-joint should be considered for incorporation into the MSE Wall facing design at Sta. 143+75 to aid in the reducing the impact of the differential settlement that may occur as the wall transitions from an improved soil to the existing soils and/or new structural fill pad.

4.4 DRIVEN PILES

Based on obtaining supplemental borings near each abutment, KEG has reviewed the pile support of the proposed East and West Abutments, accordingly. Due to the settlement issues, downdrag is a concern for the piles and support of the abutments, depending upon the use and application of ground improvement, similar to as discussed in the Abbreviated SGR.

The preliminary design loads for the abutments, as provided by Benesch, are shown in the Table below.

Substructure Unit	Factored Reactions (kips)
Abutments	3,864

Table 4.4 - Preliminary Design Load

The estimated pile lengths for the H-pile types are shown in Tables 4.4.1 thru 4.4.6 below. The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving and will assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loadings. Piles are estimated to bear on limestone bedrock, relying on end-bearing only. The tables below show the Maximum Factored Bearing Resistance of the various pile types. The Pile Length input sheets are included as Pile Length/Pile Type, Exhibit G. In addition to the information below; refer to the original Abbreviated SGR for information related to driven pile support of the Abutments and Piers, including the use of pile sleeves at the abutments, due to down drag concerns, and the recommended use of pile shoes.

	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD Criteria) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
West Abutment	335	185	51	836.52
East Abutment	335	185	59	839.61

Table 4.4.1 - Estimated Pile Lengths for HP 10x42 H-Pile

Table 4.4.2 - Estimated Pile Lengths for HP 12x53 H-Pile

	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD Criteria) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment	418	230	51	836.52	
East Abutment	418	230	59	839.61	

Table 4.4.3 - Estimated Pile Lengths for HP 12x63 H-Pile

	R _n Nominal Required Bearing (kips)	R _n Nominal Required Bearing (kips) Required Required Required (LRFD Criteria) (kips)		Assumed Pile Cut-off Elevation (ft.)	
West Abutment	497	273	51	836.52	
East Abutment	497	273	60	839.61	

Table 4.4.4 - Estimated Pile Lengths for HP 14x73 H-Pile

	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD Criteria) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment	578	318	51	836.52	
East Abutment	578	318	60	839.61	

	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD Criteria) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
West Abutment	705	388	51	836.52
East Abutment	705	388	60	839.61

Table 4.4.5 - Estimated Pile Lengths for HP 14x89 H-Pile

4.5 GROUND IMPROVEMENT RECOMMENDATIONS

Ground improvement is recommended in consideration of the overall project; based upon the proposed fill heights and associated loads, the subsurface conditions, estimated settlement, bearing resistance, down drag, and the anticipated construction schedule.

Various types of ground improvement are available, including wick drains; a combination of surcharge and wick drains; removal and replacement; aggregate column ground improvement (ACGI); rigid inclusion ground improvement (RIGI); a hybrid combination of ACGI and RIGI; or a combination of wick drains and ACGI, including different methods of wall installation and/or MSE wall face type/units used in the design.

4.5.1 WICK DRAINS

Wick drains, as discussed earlier in this report, are recommended to significantly reduce the amount of anticipated post-construction settlement, particularly for the remainder of the embankments outside the limits of the recommended improved areas under the retained zones of the walls, including where the embankments come together, as necessary. Based on our estimates, a maximum spacing of 5 feet center to center is recommended, in order to accelerate anticipated settlements of up to 4.8 inches in less than 6.5 months. We recommend contacting a qualified contractor to discuss their recommended spacing, etc., based on the subsurface conditions summarized in this report and the Abbreviated SGR. Where other applications are utilized for ground improvement, it is recommended that wick drains be installed <u>prior</u> to installation of the other improvements.

4.5.2 EMBANKMENT SURCHARGE

If the construction schedule allows, the ground improvement program could include surcharging the MSE wall-supported embankment fill areas before the abutments and walls are constructed. If the site's layout is such that the embankments and surcharge fills cannot be placed or if the construction schedule will not allow for an estimated 3.6 month surcharge duration for the east abutment or a 6.5-month surcharge duration for the west abutment in combination with wick drains, other improvement methods will need to be considered, as discussed below.

4.5.3 REMOVAL AND REPLACEMENT

Removal and replacement could be a cost-effective option, provided recommended depths of up to 12 feet of the existing soils below the east and west approaches and abutments can be effectively removed and replaced without adversely affecting the adjacent existing structures and/or roadbeds during construction. Based on the results of our settlement and slope stability analysis, we recommend removal and replacement extend to a minimum elevation of El. 807.5 at the East Approach and Abutment and extend to a minimum elevation of El. 805.0 at the West Approach and Abutment of the Ramp BD improvements. The existing soils could be reconditioned and recompacted back into place in the undercut areas, or other approved structural fill materials could be considered for backfill, such as crushed stone. Backfill materials should be compacted to a minimum of 95 percent of a Standard Proctor maximum dry density (ASTM D698). The advantage of reusing the site soils would be savings on having to import structural fill materials, including crushed stone fill. One disadvantage to re-use of the site soils, would be the efforts required for moisture reconditioning to acceptable moisture contents during replacement and compaction, which could increase time to construction completion. Imported fill materials could essentially run into the same situations depending upon the moisture condition of the import materials and weather conditions at the time of construction. In our opinion, re-use of site soils to any extent, would help in the overall construction duration and costs, even if considered in combination to using imported fill materials, for some of the fill areas. Crushed stone used for backfill of overexcavations should have fines or have a significant "minus gradation" to the matrix, such as CA-2, CA-4, CA-6, CA-9 and CA-10. Larger shot-rock in general accordance with IDOT RR-1 gradation may be appropriate, provided it has sufficient fines, such that no open voids remain in the matrix after placement and compaction. Shot rock could be blended with site soils to bulk up the backfill materials and also provide sufficient fines to choke off any porous shot rock materials. Asphalt millings may also be considered, provided they also have a gradation with sufficient fines content. Crushed stone backfill of overexcavations should not consist of porous granular gradations. Porous granular gradations could result in accumulation of groundwater within the backfill matrix over time and/or cause uncontrolled migration of soil fines into the porous backfill zones and induce potential uncontrolled subsidence and settlement over time.

4.5.4 AGGREGATE COLUMN GROUND IMPROVEMENT

Based on the results of our settlement analysis as discussed above, ACGI could be an option within the proposed MSE wall retained zone, including the face and an additional distance in front of the walls, as discussed below. However, ACGI may not be suitable due to potential installation issues below the groundwater table.

For the East Abutment MSE wall-supported embankment and the associated fill, the ACGI should extend to a depth of 30 ft. and limit settlement to no more than 2 in. at an applied bearing pressure of 2,497 psf. For the West Abutment MSE wall-supported embankment and the associated fill, the ACGI should extend to a depth of 25 ft., or bedrock at a shallower depth and limit settlement to no more than 2 in. at an applied bearing pressure of 3,038 psf. Higher applied pressures may need to be addressed beneath the walls themselves.

For wall/embankment heights of 15 to 27 feet, the ACGI should extend a minimum of 5 feet laterally in front of the walls. For walls greater than 27 feet tall, the ACGI should extend a minimum of 15 feet in front of the walls. Below the remainder of the retained zone and embankments for walls greater than 27 feet tall, ACGI elements will be required. For the walls at each of the

proposed bridge abutments, the ACGI need to extend a minimum of 15 feet in front of the walls that pass in front of the abutments and to the back of the retained zone determined by the wall designer on the backside of the abutments. ACGI elements need to be maintained a minimum of 3 ft. away from any new pile locations to avoid interference with pile installation and/or 5 ft. away from any existing foundations to avoid interference during installations. See Recommended Ground Improvement Locations, Exhibit H, based on the approved TS&L.

Based on discussions with aggregate pier contractors, differential settlements of up to 1½ inches, with total settlements of up to 4 inches over a length of 100 feet are typical for MSE walls constructed over ACGI treated soils. In our opinion, the ACGI should be designed to limit settlement from the proposed loads to no more than 2 in., and differential settlements along the wall face to no more than 1 in. in 100 lineal ft. It is anticipated that this will result in an approximate spacing of 8 to 10 ft., center-to-center, for the ACGI elements.

4.5.5 RIGID INCLUSION GROUND IMPROVEMENT

RIGI is also an option to be considered and is typically installed in a similar fashion to ACGI elements, with the only difference being that cement grout or concrete is used in the columns versus crushed aggregates. A working platform or pad of compacted crushed stone is also usually required over the top of the improved soils and RIGI elements to act as a load transfer pad for support of the structures proposed. Such a platform is not necessary in an ACGI application in many cases.

RIGI is more applicable for very weak soils, such as peat, organic silts, or very soft clays or any soil where there is little to no confinement from the surrounding matrix, such as soils with very low blow counts or N-values, or as referenced as weight-of-hammer (WH) on boring logs. Site soils impacted by significant shallow water table issues, such as fluvial soils in flood plains, or poorly drained areas also fall into this category.

The soils impacted by settlement, as discussed in this report, are moderately soft and have been subjected to some consolidation over time, and the groundwater table encountered in the borings is primarily shown to be below the depth of the settlement impacted soils or up to the bottom of the settlement zone in underlying sand deposits. The groundwater levels are somewhat higher in the soils near the West Abutment versus the soils in the East Abutment, as noted in the boring logs. The settlement estimated for this site is primarily due to the height of the proposed embankments and MSE walls and the estimated pressures from this additional loading, not necessarily due to an overly weak or soft nature of the impacted soils.

If RIGI is considered as an improvement option for this site, the layout and depths should be the same as recommended above for the ACGI option, and as indicated on the Recommended Ground Improvement Locations, Exhibit H; with the exception that a working platform will be required as part of the design over these elements, as discussed above. With the RIGI application, wick drains would not need to be used in conjunction, as could be considered with an ACGI application.

4.5.6 HYBRID ACGI AND RIGI IMPROVEMENT

An additional option to consider is using a combination of both of the above recommended column improvement options, typically labeled as a "Hybrid" application. The same contractor that performs the ACGI installations should also be familiar with and able to perform the RIGI

installations with subtle differences in the equipment required for grout backfill versus aggregate backfill. Where the hybrid application may come into benefit on this project, is with concerns with the groundwater table elevations during construction. As indicated above, the RIGI application may be more conducive to the West Abutment improvements versus the East Abutment improvements simply due to anticipated groundwater impacts during installation of the elements. A cost savings advantage of the hybrid may result in such a case, versus simply using the RIGI application for the entire site. This goes for any of the improvement options recommended above, in that <u>any combination</u> of the above methods of ground improvement could be used across this site, depending upon logistics, site constraints or construction schedule, in order to produce the most cost-efficient approach for ground improvement for this project.

4.5.7 CONTRACTOR DESIGNED GROUND IMPROVEMENTS

We recommend contacting qualified contractors to discuss the methods of ground improvement recommended above, including, the specific depths, number, and spacing of elements, for the ACGI, RIGI, or Wick Drain improvement options, and the anticipated post-construction settlements that could be expected with each application. Any other specialized ground improvement techniques or contractors may only provide designs based on their specific patented methods or product that could result in unexpected delays in obtaining contract design plans.

Regardless of the improvement options chosen, in addition to placement of settlement plates where feasible within the embankment fills; we recommend that survey benchmarks/settlement points be established along each of the three faces of the MSE Walls around both abutments near critical points such as corners or large steps in the wall alignments to monitor the magnitude and rate of settlement as the new fills are placed and the walls are constructed.

5.0 MSE WALL CONSTRUCTION

MSE wall and embankment construction may proceed simultaneously, provided that ground improvement techniques are utilized as recommended in this report. Permanent MSE wall facing units may be installed as construction proceeds provided slip-joints or MSE facing units capable of handling differential and total settlements are used in the design.

6.0 LIMITATIONS

The recommendations provided herein are for the exclusive use of Benesch and IDOT. They are specific only to the project described and are based on the subsurface information as presented in the original Abbreviated SGR prepared by Hanson, dated Revised April 2017; and six supplemental borings obtained by IDOT in August and September of 2020; KEG's understanding of the project as described herein; and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

EXHIBIT A

LOCATION MAP

LOCATION MAP

I-39/US 20 Ramp BD (FAI Route 39) Section (201-3)K & (4-1, 5) R SN 101-0215 Winnebago County, Illinois

EXHIBIT B

BORING PLAN

BORING PLAN

I-39/US 20 Ramp BD (FAI Route 39) Section (201-3)K & (4-1, 5) R SN 101-0215 Winnebago County, Illinois

EXHIBIT C

TYPE, SIZE AND LOCATION PLAN

	11 100 Joos 10032033 (CHUD 13 CHUC C MODEL 110.	11-13-130-Hamp-DD-Over-0320-13C-0gr				
		USER NAME =	DESIGNED - MNM	REVISED -		
8 8			CHECKED - TEH	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 1
AWN		PLOT SCALE =	DRAWN - ROD	REVISED -	DEPARTMENT OF TRANSPORTATION	
RE DE	C Copyright Hanson Professional Services Inc. 2017	PLOT DATE =	CHECKED - MNM	REVISED -		SHEET NO. 04 OF 04

EXHIBIT D

BORING LOGS

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd.

Date 8/19/20

LOGGED BY W. Garz

SECTION (201-3)K & (4-1,5)R LOCATION Cherry Valley, NE9, SEC., TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

ROUTE

Division of Highways

I-39/Bypass 20

Illinois Department of Transportation

DESCRIPTION

Hollow Stem Auger

HAMMER TYPE CME-45 Automatic

	STRUCT. NO. Proposed Ramp B	D_	Latit Long	ude gitude	<u>36°</u> 97	24' 39 ° 57' 52	.76" Northing 2.73" Easting	<u>42.2</u> 89.0	206)064			_
	Station BORING NOB-1i Station143+50 Offset11.00ft Rt Ground Surface Elev820.98		D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.	_ ft _ ft _ ft ¥ _ ft _ ft	D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
				-			MEDIUM light gray SILTY LOAM (continued)	700.08		2 5	0.8 B	21.0
	HARD brown SILTY CLAY LOAM	818.98		7 8	4.0	14.0	STIFF light gray SILTY LOAM	199.90		1	1.1	21.0
		817.48		9	<u>Р</u>					0	D	
	HARD brown SILTY CLAY LOAM	814.98	5	6 8 10	4.3 P	17.0	MEDIUM tan FINE SAND 5' Run	796.48	<u>-25</u>	3 10 14		
	STIFF tan SILTY LOAM	812.48		4 4 7	1.4 P	20.0		-	▼ 			
dinate system.	MEDIUM tan SILT	809.98	-10	2 3 6	0.8 B	23.0	DENSE tan WELL-CEMENTED SAND 5' Run		 	4 11 30		
the ILHP-WF cool	VERY STIFF tan SILTY LOAM	807.48		2 4 6	2.5 B	23.0						
alculated using	STIFF light brown SILTY CLAY LOAM TILL	804 98	- <u>15</u>	2 4 6	1.7 B	23.0	HARD tan SANDY LOAM TILL 5' Run	786.48	- <u>35</u>	13 18 17	4.2 S	9.0
and Easting were c	MEDIUM gray SILTY CLAY LOAM TILL	802.48		0 2 3	0.9 B	24.0						
Northing	MEDIUM light gray SILTY LOAM		-20	0			No Recovery		-40	4		

	Date	8/19/20
north and		
ne Rd.	LOGGED BY	W. Garza

Illinois Department of Transportation Division of Highways P92-111-06 - Proposed retaining wall r ROUTE I-39/Bypass 20 DESCRIPTION south of US Byp 20, 1.1 mi E of Alpi SECTION _____(201-3)K & (4-1,5)R LOCATION Cherry Valley, NE9, SEC. , TWP. 43N, RNG. 2E COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-45 Automatic 42.2206 36° 24' 39.76" Latitude Northing Longitude -97° 57' 52.73" Easting -89.0064 **STRUCT. NO.** Proposed Ramp BD Station Surface Water Elev. ft D В U Μ Stream Bed Elev. ft Ε L С Ο Ρ Ο S Т BORING NO. B-1i Groundwater Elev.: т w S Station 143+50 First Encounter 794.0 ft 🗴 н S Qu Т 11.00ft Rt Offset Upon Completion ____Dry__ft Ground Surface Elev. 820.98 ft (ft) (/6") (%) After _____ Hrs. ft (tsf) No Recovery (continued) 4 5 779.98 End of Boring _____ _____

_					
—					
-55					
_					
_					
_					
-60					
The Unconfined Compressive Strength (UCS) Failu	re Mode is	indicate	ed by (B-Bulge, S-S	hear, P-Penetron	neter)
The SPT (N value) is the sum of the last two blow v	alues in ea	ach sam	pling zone (AASHT	O T206)	DDO from 4
					BBS, from 1

Date	8/18/20

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd. LOGGED BY W. Garza

SECTION _____(201-3)K & (4-1,5)R LOCATION _Cherry Valley, NE9, SEC. , TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

ROUTE

Division of Highways

Illinois Department of Transportation

I-39/Bypass 20 DESCRIPTION

Hollow Stem Auger

HAMMER TYPE CME-45 Automatic

	STRUCT. NO. Proposed Ramp B	D	Latit Long	tude gitude	<u>36°</u> -97	<u>24' 39</u> ° 57' 52	.76" Northing 2.73" Easting	<u>42.22</u> -89.0	206 066			_
	Station BORING NOB-2i Station144+00 Offset11.00ft Rt Ground Surface Elev818.65		D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.	_ ft _ ft _ ft ¥ _ ft _ ft	D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	MEDIUM brown SILTY CLAY LOAM			-	Dry	15.0	MEDIUM/LOOSE tan DIRTY SAND with MEDIUM GRAVEL (continued)			2 5	0.5 P	13.0
	VERY STIFF brown SILTY CLAY LOAM	816.65 815.15		4 5 8	2.0 P	23.0	VERY STIFF tan SANDY LOAM TILL	796.65	₹ 	6 12 14	3.3 B	10.0
	STIFF tan SILTY LOAM	812.65	5	2 3 4	1.0 B	22.0	VERY STIFF tan SANDY LOAM TILL 5' Run	792.65	-25	5 8 13	3.1 B	11.0
	STIFF tan SILT	810.15		3 5 7	1.4 B	22.0						
rdinate system	VERY STIFF dark brown SILTY CLAY LOAM	807.65	 10	3 6 5	2.7 B	25.0	STIFF gray SANDY LOAM TILL 5' Run	787.65	 	2 3 5	1.1 B	13.0
the ILHP-WF coo	STIFF gray SILTY CLAY LOAM	805.15		2 4 6	1.3 B	22.0						
calculated using	MEDIUM tan/gray SILTY LOAM		-15	1 2 3	0.6 B	24.0	MEDIUM gray SANDY LOAM TILL		-35	1 3 6	0.5 P	10.0
and Easting were	LOOSE tan MOIST DIRTY SAND	801.65 800.15		1 2 3		11.0	VERY DENSE tan WEATHERED LIMESTONE	781.65		100 for 1"		
Northing a			-20	1			End of Boring	779.15	-40			

Date 8/27/20

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd. LOGGED BY W. Garza

SECTION _____(201-3)K_& (4-1,5)R _____ LOCATION __Cherry Valley, NE9, SEC. , TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

ROUTE

Division of Highways

Illinois Department of Transportation

I-39/Bypass 20 DESCRIPTION

Hollow Stem Auger

HAMMER TYPE CME-45 Automatic

	STRUCT. NO. Proposed Ramp B	D	Latit Long	ude gitude	<u>36°</u> -97	<u>24' 39</u> ° 57' 52	.76" Nor 2.73" Eas	thing ting	<u>42.22</u> -89.0	204 068			_
	Station BORING NOB-4i Station144+65 Offset24.00ft Lt Ground Surface Elev817.30	ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	None Dry	ft ft ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	VERY STIFF brown SILTY CLAY			-	2.0	23.0	VERY STIFF tan SANDY LO	AM			6	3.0 D	11.0
		815.30			P	20.0	5' Run <i>(continued)</i>		796.30		3	-	
	STIFF DROWN SILTY CLAY LOAM	813.80		2 3 4	1.3 B	13.0							
	MEDIUM tan SILTY LOAM			1			HARD tan WELL-CEMENTE	D		-25	10		
		811.30		2 4	0.6 B	23.0	SANDY LOAM TILL 5' Run		791.30		17 21	4.5 P	8.0
	STIFF tan SILTY LOAM	808.80		3 5 8	1.9 B	22.0							
system	VERY STIFF brown SILTY CLAY		-10	2			STIFF gray SANDY LOAM T	ILL		-30	8	. –	
ordinate s		806.30		4 7	2.3 B	25.0	5' Run				10 14	1.7 B	9.0
he ILHP-WF co	MEDIUM gray SILTY CLAY LOAM			1 2 4	0.8 B	24.0							
ed using t	LOOSE tan DIRTY SAND AND	802.80	- <u>15</u>	1			VERY DENSE gray WEATH	ERED	782.80	-35	100		
alculat	GRAVEL 5' Rup			2 4		19.0	LIMESTONE		781.30		for 2"		
ing were c				-			End of Boring						
and East													
Northing		797.80	-20	2						-40			

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd. LOGGED BY W. Garza

SECTION _____(201-3)K & (4-1,5)R LOCATION Cherry Valley, NE9, SEC., TWP. 43N, RNG. 2E

COUNTY _____ Winnebago ____ DRILLING METHOD _____ Hollow Stem Auger _____ HAMMER TYPE ____ CME-45 Automatic ____

ROUTE

Division of Highways

Illinois Department of Transportation

I-39/Bypass 20 DESCRIPTION

	STRUCT. NO. Proposed Ramp BD		Latitude Longitude		<u>36° 24' 39.</u> -97° 57' 52		Northing 42.2204 2.73" Easting -89.0067
	Station BORING NOB-5iST Station144+25 Offset43.00ft Lt Ground Surface Elev817.65		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.ftDBUMStream Bed Elev.ftELCOGroundwater Elev.:First Encounter795.7ftWSJpon CompletionDryftHSQuTAfterHrs.ft(ft)(/6")(tsf)(%)
	VERY STIFF light brown SILTY CLAY LOAM			-	2.0 P	20.0	MEDIUM tan SANDY LOAM WITH 8 0.9 11.0 GRAVEL (continued) 8 B
	SOFT light brown SILTY CLAY LOAM	815.65 814.15		2 3 4	0.5 B	26.0	795.65▼ 9 MEDIUM tan SANDY LOAM WITH 9 GRAVEL 8 0.8 11.0 794.15 11 P
	VERY SOFT tan SILT	811.65	5	2 2 4	0.2 P	24.0	VERY STIFF tan SANDY LOAM TILL 791.65 9 2.8 10.0 791.65
	VERY STIFF light gray SILTY CLAY	809.15		3 4 7	2.1 B	24.0	VERY STIFF tan SANDY LOAM TILL 789.15
ordinate system	STIFF gray CLAY LOAM	806.65	-10	2 4 6	1.7 B	26.0	VERY STIFF tan SANDY LOAM 2 6 2.5 10.0 786.65 9 B
ig the ILHP-WF cc	STIFF gray SILTY CLAY LOAM TILL	804.15		2 3 5	1.1 B	23.0	STIFF gray SANDY LOAM TILL with DIRTY SAND LENS
calculated usir	MEDIUM light gray SILTY LOAM		-15	1 3 5	0.8 P	24.0	783.15 783.15 VERY DENSE tan WEATHERED -35 3 LIMESTONE 100 100 781.65 for 4" -35
Vorthing and Easting were	MEDIUM tan DIRTY SAND	800.65 799.15		024	0.6 P	12.0	

Date 9/16/20

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd. LOGGED BY W. Garza

SECTION _____(201-3)K & (4-1,5)R _____ LOCATION _Cherry Valley, NE9, SEC. , TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

Division of Highways

ROUTE

Illinois Department of Transportation

I-39/Bypass 20 DESCRIPTION

Shelby Tubes

HAMMER TYPE CME-45 Automatic

STRUCT. NO. Proposed Ramp BD		Latitude Longitude	<u>36° 24'</u> -97° 57	<u>39.76"</u> ' 52.73"	Northing Easting	<u>42.2204</u> -89.0066					
Station BORING NO. Station Offset Ground Surfa	B-5iSTa 144+25 43.00ft Lt ce Elev. 817.65 ft	DBEL POTW HS((/6")	U M C C S I Qu 1 (tsf) (%	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.		ft D Ft P T ft H ft (ft)	B U L 0 W S C (/6'') (ts	U M C O S I S J Qu T sf) (%)			
Auger to 2.5'											
30" Push 24" Rec	815.15			12" Push 12" Rec		795.65					
30" Push 20" Rec	812.65	<u>-5</u> 		End of Boring		<u>-25</u>					
Auger to 14.5'	810.15			_							
ate system											
HP-WF COOLDIN											
1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	803.15			_							
27" Rec	800 65					 					
50" Push 30" Rec 30" Rec											
	798.15	-20		_		-40					

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd.

Date 8/13/20

LOGGED	BY	N.	White
LOCOLD			v v i nico

SECTION (201-3)K & (4-1,5)R LOCATION Cherry Valley, NE9, SEC., TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

ROUTE

Division of Highways

I-39/Bypass 20

DESCRIPTION

Illinois Department of Transportation

Hollow Stem Auger

HAMMER TYPE CME-45 Automatic

	STRUCT NO Proposed Ramp R	חי	Latit Long	tude gitude	<u>36°</u> -97	<u>24' 39</u> ° 57' 52	<u>.76"</u> Northing 2.73" Easting	<u>42.2</u> -89.0	<u>200</u>)084			
	Station		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	_ ft _ ft _ ft ¥ _ ft ⊻ _ ft ∑ _ ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	MEDIUM brown SILTY CLAY LOAM			-	0.5	13.0	MEDIUM tan SANDY LOAM TILL (continued)			3 4	0.5 B	13.0
	STIFF brown SILTY CLAY LOAM	817.18 815.68		5 5 6	P 1.8 B	13.0	VERY DENSE dark brown MEDIUM DIRTY SAND	797.18	 	3 5 59		
	STIFF brown SANDY LOAM			3	1.4	13.0	STIFF tan SANDY LOAM TILL	794.68	-25	3	1.5	11.0
	STIFF brown SANDY LOAM	813.18 810.68		7 5 7 8	В 1.0 В	14.0	VERY STIFF tan SANDY LOAM TILL	792.18		12 7 10 13	B 2.4 B	19.0
linate system	VERY STIFF gray SILTY LOAM	808.18	 10	2 4 6	3.7 P	18.0	DENSE tan FINE-MEDIUM SAND AND GRAVEL	789.68		6 14 21		
the ILHP-WF coord	MEDIUM gray SILTY LOAM	805.68		0 1 2	0.5 B	29.0	VERY DENSE tan WEATHERED LIMESTONE	787.18		6 100 for 6"		
e calculated using	STIFF gray SANDY LOAM	803.18	 	2 3 6	1.1 B	17.0	VERY DENSE tan WEATHERED LIMESTONE End of Boring	783.68	<u>35</u>	100 for 4"		
and Easting werc	MEDIUM tan SANDY LOAM TILL	800.68	▼ 	2 2 3	0.5 B	13.0						
Northing	MEDIUM tan SANDY LOAM TILL		-20	2					-40			

P92-111-06 - Proposed retaining wall north and south of US Byp 20, 1.1 mi E of Alpine Rd. LOGGED BY W. Garza

SECTION _____(201-3)K & (4-1,5)R LOCATION _Cherry Valley, NE9, SEC. , TWP. 43N, RNG. 2E

COUNTY Winnebago DRILLING METHOD

DESCRIPTION

Illinois Department of Transportation

Division of Highways

ROUTE

I-39/Bypass 20

Hollow Stem Auger

HAMMER TYPE CME-45 Automatic

	STRUCT. NO Proposed Ramp B	D	Latit Long	ude gitude	<u>36°</u> -97	<u>24' 39</u> ° 57' 52	.76" Northing 2.73" Easting	<u>42.21</u> -89.0	99 086			_
	Station BORING NOB-14iST Station149+75 Offset11.00ft Rt Ground Surface Elev818.12		D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	_ ft _ ft _ ft ¥ _ ft ⊻ _ ft ⊻ _ ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	MEDIUM brown SILTY CLAY LOAM			-	0.8 P	13.0	MEDIUM tan SANDY LOAM TILL (continued)	797.12		3 3	1.0 P	12.0
	VERY STIFF light brown SILTY LOAM	816.12 814.62		3 5 6	2.0 S	11.0	MEDIUM tan SANDY LOAM TILL		 Z	1 4 4	0.8 B	12.0
	VERY STIFF brown SANDY CLAY LOAM	812.12	5	3 5 8	2.9 B	15.0	STIFF tan SANDY LOAM TILL		-25	2 3 5	1.1 B	12.0
	STIFF gray SANDY LOAM	809.62		4 3 3	1.3 P	18.0	VERY LOOSE tan SAND with MEDIUM GRAVEL	791.12		0 0 4		
inate system	STIFF gray SILTY LOAM	807.12	-10	3 4 5	1.1 B	27.0	VERY DENSE tan WEATHERED LIMESTONE End of Boring	788.62	-30	100 for 4"		
ie ILHP-WF coord	MEDIUM gray SILTY LOAM	804.62		0 0 3	0.8 B	21.0						
alculated using th	MEDIUM light gray SILTY LOAM		- <u>15</u>	1 1 3	0.5 B	22.0			- <u>35</u>			
and Easting were c	LOOSE tan SAND with MEDIUM GRAVEL	801.12	▼	0 4 4								
Northing a	MEDIUM tan SANDY LOAM TILL	798.62	-20	0					-40			

(ন্স)	Illinois Depart	ment		50			Page	<u>1</u> of _
	Division of Highways						Date	9/16/20
DOUTE			PS	92-111	-06 - Proposed retaining	wall north and		
	I-39/Dypass 20 De		''N	South	<u>01 03 Byp 20, 1.1 IIIE 0</u>			VV. Galz
SECTION	(201-3)K & (4-1,5)R	Loca	ATION _	Cherry	y Valley, NE9, SEC. , TW	P. 43N, RNG. 2E		
COUNTY	Winnebago DRILLIN	g method)		Shelby Tubes	HAMMER TYPE	CME-45	Automatic
STRUCT. NO.	_Proposed Ramp BD_	Latitude Longitud	<u>36°</u> e <u>-97</u>	° 24' 39 ′° 57' 5	9.76"	Northing <u>42.2</u> Easting <u>-89</u> .	2199 0086	
Station		D B	U	м	Surface Water Elev.	ft		
BORING NO. Station Offset	B-14iSTb 149+75 11.00ft Rt	E L P O T W H S	C S Qu	U I S T	Groundwater Elev.: First Encounter Upon Completion	ft		
Ground Surfa	ace Elev. <u>818.12</u> ft	(ft) (/6'	') (tsf)	(%)	After Hrs	ft		
30" Push 27.5" Rec								
	815.61							
30" Push	013.02	<u> </u>			-			
30" Rec		_						
36" Duch	813.12	2			-			
24.0" Rec		_						
A	810.12	2	_	ļ	-			
Auger to 11.0		_						
		10						
	807.12	2						
36" Push 29.0" Rec		_						
	804.12	2						
26" Push 26.0" Rec					1			
20.0 1160		<u>-15</u>						
	004.44	, –						
End of Boring	801.12	<u> </u>			-			
		\neg						
		-20		1				

EXHIBIT E

SUBSURFACE PROFILE

β/2

1
 825
 820
 815
 810
 805
 800
 795
 790
 785
 780
 775

Section: (201-3)K & (4-1,5)R County: Winnebago

 · · · · · · · · · · · · · · · · · · ·	820
 · ·	815
	810
	805
	000
 	800
	795
 	790
 	785
	700
 	780
:	

Route: I-39/Bypass 20 Section: (201-3)K & (4-1,5)R County: Winnebago

Route: I-39/Bypass 20 Section: (201-3)K & (4-1,5)R County: Winnebago

 	820
	045
	010
	810
	010
 	805
 	800
 	795
 	790
 	785
 	780
	//5

EXHIBIT F

LABORATORY TEST DATA

То:	Masood Ahmad	Attn: Amy Harms (Byron Wetzell)
From:	Brian A. Pfeifer	By: Daniel H. Tobias MA
Subject:	Shelby Tube Test Result	S
Date:	July 27, 2021	

Route: FAI 39 (I-39/US 20 Ramp BD) Section: (201-3)K & (4-1,5)R County: Winnebago Job No.: P-92-111-06 BMPR Lab No.: 20203 & 20204 SN: 101-0215

The Central Bureau of Materials (CBM) Geotechnical Sub-unit has conducted laboratory testing, as requested by District 2 for the above referenced project on Shelby Tubes taken near Station 144+25, 43.0 ft. LT and Station 149+75, 11.0 ft. RT on proposed Ramp BD. The laboratory test results for Borings B-5iSTa and B-14iSTb are presented in Attachments A and B, respectively. The Shelby Tube Test Results form summarizes the test results for the unconfined compression test, moisture content, density, and unconsolidated-undrained triaxial with pore water measurements. Results of the grain size analysis and Atterberg limits are summarized on BMPR 508a forms, IDH textural classification charts, IDH grain size distribution graphs, and Atterberg limits' results plots. Additionally, a summary of the consolidation test results is presented in Tables 1 and 2.

Table 1. Consolidation Test Summary for B-5iSTa. Lab Project No. 20204

Sample No.	Depth (ft.)	eo	P'o (tsf)	P'c (tsf)	Cr	Cc	OCR
7-2	6.04	0.796	0.376	1.654	0.024	0.249	4.4
8-3	16.17	0.746	1.021	1.198	0.014	0.179	1.2

Table 2. Consolidation Test Summary for B-14iSTb. Lab Project No. 20203

Sample No.	Depth (ft.)	eo	P'o (tsf)	P'c (tsf)	Cr	Cc	OCR
2-3	4.08	0.370	0.272	1.783	0.004	0.069	6.6
4-3	12.67	0.683	0.816	1.108	0.008	0.155	1.4
5-2	14.88	0.748	0.924	0.924	0.007	0.192	1.0

Page 2 Shelby Tube Test Results July 27, 2021

The variables in Tables 1 and 2 are as follows: e_0 = initial void ratio, P'_0 = effective overburden pressure at the center of the compressible soil layer, P'_c = preconsolidation pressure (maximum past overburden effective pressure, P'_{max}), c_r = recompression index, c_c = compression index, and OCR = Over Consolidation Ratio (P'_c / P'_0).

If you have any questions or need further assistance, please contact Heather Shoup at (217)785-9972 or Kurt Schmuck at (217)782-0870 of the CBM Geotechnical Sub-Unit.

Attachments

cc: Heather Shoup Kurt Shmuck

ATTACHMENT A

LABORATORY TEST RESULTS

Boring B-5iSTa (Lab Project No. 20204)

Shelby Tube Test Results

Boring N	lo.: <u>B-5</u>	iSTa N	E Abut.	Rou	te: <u>I-3</u>	9/US BYP 20 Tuk			Tul	be Length/Diameter: <u>36-in./3.0-in.</u> Page: <u>1</u> of <u>2</u>
Station:	144	4+25 Ra	amp BD	Sect	tion: (20	1-3)K &	-3)K & (4-1,5)R Gro			ound Surface Elev.: 817.65 ft. Date: 6-18-2021
Offset:	43.	0 ft. Lt.		Cou	nty: Wi	nnebago	nebago Beg			gin Sampling Depth: 815.15 ft. Job No.: P-92-111-06
Latitude	: 42.	2204° (b	oring)	Stru	cture No.:	101-0)215 PR		Gro	ound Water Elev.: 795.7 ft. Soils Lab Project No.: 20204
Longitud	de: -89	.0066° (boring)	Con	tract No.:	64C6	2		Dri	lled by: W. Garza Prepared by: Kurt Schmuck
Sample	Depth	Elev.	Qu (tsf)	Moist.	Unit Wt.	c (psf)	Φ (ded)	c' (nsf)	Φ' (deg)	Soil Type, Description and Observations
110.	0.00	817.7	((31)	(70)	(por)		(ucg)	(p3i)	(ucg)	Not Sampled
	↓ ↓									
	Ļ	Ļ								
	2.50	815.2								Not Sampled
6-1	3.12	814.5	0.79	20.5	120.8					Dark Gray Silty Clay Loam w/ hair roots, top ½, to Brown Silty Clay
6-2	3.75	813.9	1.35	27.3	121.7					Brown Silty Clay w/ oxidized Silty Loam pockets
6-3	4.38	813.3	UU Tx	24.0	123.3	873	4.0	829	13.7	Brown oxidized Silty Clay Loam w/ Silty Clay streaks
6-4	5.00	812.7								No Recovery
7-1	5.42	812.2		24.5						Brown Silty Clay
7-2	6.04	811.6	Cons.	23.2	124.7					Brown Silty Clay, top 1/2, to Tan Silt (cons. from top 1/2)
7-3	6.67	811.0	UU Tx	22.7	126.8	984	26.8	333	33.0	Tan Silt
7-4	7.50	810.2								No Recovery
	\downarrow	↓								Not Sampled
	\downarrow	↓								↓
	↓	↓								↓
	14.50	803.2								Not Sampled
8-1	14.92	802.7		23.5						Mixture of Gray Silty clay Loam, Brown Silty Loam, Silty Clay Loam & Silty Clay
8-2	15.54	802.1	UU Tx	23.2	124.1	763	3.7	619	17.4	Gray Silty Clay to gray Silty Clay Loam w/ oxidized Silty Loam pockets
8-3	16.17	801.5	Cons.	22.7	126.1					Gray Silty Clay Loam w/ small gravel & Sand pockets
8-4	16.79	800.9	1.52	18.4	134.1					Gray Silt w/ Sandy Loam pockets – small & large gravel
9-1	17.42	800.2		19.3	126.3					Gray Silty Clay, top ¾, to Gray Sandy Loam
9-2	18.04	799.6	0.36	10.4	142.4					Tan Sandy Loam w/ Sandy Clay Loam pockets – stones & gravel
9-3	18.67	799.0	UU Tx	9.9	143.3	626	21.0	187	33.8	Tan Sandy Loam w/ Sandy Clay Loam pockets – stones & gravel
9-4	19.29	798.4	0.36	9.9	141.1					Tan Sandy Loam w/ Sand layers & Sandy Clay Loam pockets – stones & gravel

The Unit Wt. column represents the Moist Unit Weight.

The Qu column represents the Unconfined Compressive Strength using AASHTO T 208.

The c and Φ column represents cohesion and friction angle for total stress using AASHTO T 296 (unconsolidated-undrained triaxial testing).

The c' and Φ ' column represents cohesion and friction angle for effective stress using either AASHTO T 297 (consolidated-undrained triaxial testing), or AASHTO T 296 with pore pressure measurement.

Shelby Tube Test Results

Boring N	lo.: <u>B-5</u>	iSTa N	E Abut.	Rou	ite: <u>I-3</u>	9/US BY	'P 20		Tul	be Length/Diameter: <u>36-in./3.0-in.</u> Page: <u>2</u> of <u>2</u>
Station:	144	4+25 Ra	amp BD	Sec	tion: <u>(</u> 20	1-3)K &	-3)K & (4-1,5)R			ound Surface Elev.:817.65 ft Date:6-18-2021
Offset:	43.	0 ft. Lt.		Cou	inty: Wi	nnebago)		Be	gin Sampling Depth: 815.15 ft. Job No.: P-92-111-06
Latitude	42.	2204° (b	ooring)	Stru	cture No.:	101-(0215 PR		Gro	ound Water Elev.: 795.7 ft. Soils Lab Project No.: 20204
Longitud	le: -89	.0066° (boring)	Con	tract No.:	64C6	62		Dri	led by: W. Garza Prepared by:Kurt Schmuck
Sample No.	Depth (ft)	Elev. (ft)	Qu (tsf)	Moist. (%)	Unit Wt. (pcf)	c (psf)	Ф (deg)	c' (psf)	Φ' (deg)	Soil Type, Description and Observations
	19.50	798.2								Not Sampled
	\downarrow	\downarrow								\downarrow
	\downarrow	↓								→
	22.00	795.7								Not Sampled
10-1	22.33	795.3		14.8						Tan Sandy Clay Loam w/ small stones
10-2	22.96	794.7	1.06	10.8	141.2					Tan Sandy Clay Loam w/ Sandy Loam pockets – stones & gravel – large rocks
10-3	23.58	794.1								No Recovery
10-4	24.50	793.2								No Recovery
										End of Shelby Tube Sampling

The Unit Wt. column represents the Moist Unit Weight.

The Qu column represents the Unconfined Compressive Strength using AASHTO T 208.

The c and Φ column represents cohesion and friction angle for total stress using AASHTO T 296 (unconsolidated-undrained triaxial testing).

The c' and Φ ' column represents cohesion and friction angle for effective stress using either AASHTO T 297 (consolidated-undrained triaxial testing), or AASHTO T 296 with pore pressure measurement.

Illinois Department of Transportation

 Route
 I-39/Bypass 20

 Section
 (201-3)K & (4-1,5)R

County Winnebago

Location

Job No.

Lab. No.		20204 6-2	20204 7-2	20204 7-3	20204 8-3
Station		144+25	<mark>144+25</mark>	144+25	<mark>144+25</mark>
Offset		43.00ft Lt	43.00ft Lt	43.00ft Lt	43.00ft Lt
Depth	ft	3.75	<mark>6.04</mark>	6.67	<mark>16.17</mark>
AASHTO Classification (AASHTO M 145)		A-7-6(26)	A-7-6(23)	A-4(3)	<mark>A-6(9)</mark>
Illinois Textural Classification		Silty Clay	Silty Clay	Silt	Silty Clay Loam
Gradation Passing - 1"	%	100	<mark>100</mark>	100	100
3/4"	%	100	100	100	100.00
1/2"	%	100	<mark>100</mark>	100	<mark>99.42</mark>
No. 4	%	100	100	100	<mark>99.23</mark>
No. 10	%	100.00	100.00	100.00	<mark>98.98</mark>
No. 20	%	99.99	<mark>99.99</mark>	99.99	<mark>98.06</mark>
No. 40	%	99.80	<mark>99.85</mark>	99.88	<mark>96.87</mark>
No. 100	%	97.97	98.07	98.96	90.73
No. 200	%	97.28	<mark>97.35</mark>	97.40	<mark>87.83</mark>
Sand (AASHTO T 88)	%	2.7	2.6	2.6	12.2
Silt (AASHTO T 88)	%	63.8	<mark>63.2</mark>	86.8	<mark>64.6</mark>
CLAY (AASHTO T 88)	%	33.4	<mark>34.1</mark>	10.6	<mark>23.3</mark>
Liquid Limit (AASHTO T 89)	%	45	<mark>42</mark>	24	<mark>29</mark>
Plasticity Index (AASHTO T 90)	%	25	22	4	<mark>12</mark>
Organic Matter Content	pcf				
Std. Dry Density (IL Mod AASHTO T 99)	%				
Optimum Moisture (IL Mod AASHTO T 99)					
Subgrade Support Rating	%	FAIR	FAIR	POOR	POOR
In situ Moisture		27	2 <mark>3</mark>	23	23

Illinois Department of Transportation

Route I-39/Bypass 20 Section (201-3)K & (4-1,5)R County Winnebago Location Job No. Lab. No. 20204 9-2 144+25 Station Offset 43.00ft Lt 18.04 Depth ft AASHTO Classification (AASHTO M 145) A-2-4(0) Illinois Textural Classification Sandy Loam % Gradation Passing - 1" 95.46 3/4" % 95.46 1/2" % 89.84 % No. 4 83.31 No. 10 % 76.45 71.61 No. 20 % 64.26 No. 40 % No. 100 % 36.83 28.31 No. 200 % 71.7 Sand (AASHTO T 88) % Silt (AASHTO T 88) % 20.8 7.5 CLAY (AASHTO T 88) % 13 Liquid Limit (AASHTO T 89) % 2 Plasticity Index (AASHTO T 90) % **Organic Matter Content** pcf Std. Dry Density (IL Mod AASHTO T 99) % Optimum Moisture (IL Mod AASHTO T 99) GRANULAR Subgrade Support Rating % 10 In situ Moisture

DOT d C DININIC 20 DV D A C C 8-11

District	2	Lab Project Number	20204	
County	Winnebago	Sample Number	7-2	
Route	I-39/US BYP 20	Boring ID	B-5iSTa NE	Abut.
Section	(201-3)K & (4-1,5)R	Boring Station	144+25	
Project Number	P-92-111-06	Boring Offset	43	ft LT of BL

Lab Project	20204								Page 2/2
Sample Number	r vr	7.2			Boring Sta	tion	111+25		Faye Z/Z
Machine Numb	or	1-2		Boring Offset			144+23 13 ft I T of BI		
District	CI	4		Boring Unset			B SISTA N		
County		Z Winnebago	`		Doning ID Project Nu	mbor	D-002-111-0		
Pouto			, (D 20		Structure M	lumbor	101 0215 1		
Section		(201 3)K &	F 20 (1 1 5)P		Contract n	umber	64062	FN	
Section		(201-5)K &	(4-1,5)		Contract II	unibei	04002		
C_v calculations cu	urve	square root			e calculatio	ns curve	square root		
e Calculations									
Increment	Increment	Loading	Ht.	MD	Adjusted	V	V/V _s	е	C _v X 10 ⁻⁴
	duration	_			ht.**				
	min.	tsf	in.	in.	inches	cm ³		V/V _s -1	in.²/min
Seating load	N/A	0.050	0.7500	0.0000	0.7500	60.3	1.796	0.796	
1	409	0.200	0.7487	0.0019	0.7487	60.2	1.793	0.793	68
2	781	0.400	0.7457	0.0028	0.7457	60.0	1.785	0.785	19
3	416	0.800	0.7398	0.0038	0.7398	59.5	1.771	0.771	39
4	857	1.600	0.7272	0.0051	0.7272	58.5	1.741	0.741	36
5	407	3.200	0.7035	0.0065	0.7035	56.6	1.685	0.685	18
6	916	6.430	0.6730	0.0085	0.6730	54.1	1.611	0.611	10
7*	1466	3.200	0.6730	0.0074	0.6730	54.1	1.611	0.611	
8*	1390	1.600	0.6761	0.0064	0.6761	54.4	1.619	0.619	
9*	1346	0.800	0.6802	0.0055	0.6802	54.7	1.629	0.629	
10	411	1.600	0.6792	0.0061	0.6792	54.6	1.626	0.626	
11	971	3.200	0.6763	0.0071	0.6763	54.4	1.619	0.619	
12	1481	6.430	0.6709	0.0086	0.6709	54.0	1.606	0.606	
13	1292	12.880	0.6442	0.0108	0.6442	51.8	1.542	0.542	9
14	1380	25.790	0.6153	0.0140	0.6153	49.5	1.473	0.473	8
15*	0	12.880		0.0000					
16*	0	6.430		0.0000					
17*	0	3.200		0.0000					
18*	0	1.600		0.0000					
19*	0	0.800		0.0000					
20*	0	0.200		0.0000					
				0.0000					
				0.0000					
				0.0000					
Final reading	N/A	0.200	0.6134	0.000	0.6134	50.0	1.489	0.489	

Lab Sample Test Results

Lab Sample Test Re	esults			Lab Test Procedures					
Tare	76.4 gr.		Test Method	T 216 B					
Wet+Tare	190.6 gr.		Sample Condition	inundated					
Cons+Tare	182.4 gr.		Inundation pressure	.050 tsf					
Dry+Tare	166.0 gr.		Test Preparation	Trimmed with cutting shoe					
Ws	89.6 gr.								
$W_w = V_w$	24.5 cm	າິ	Lab Comments:						
V _s	33.6 cm	3							
	Initial	Final							
Moisture content	27.4	18.3							
Dry Unit Wt.	92.7	111.8							

COMMENTS:

* For unload sequences, the sample height at the end of the load sequence is used instead of H₁₀₀. ** Machine deflection was accounted for in the development of the load verses deformation curves.

Lab Project	20204		
Layer 2 Worksheet			Page 2/2
Sample Number	8-3	Boring Station	144+25
Machine Number	3	Boring Offset	43 ft LT of BL
District	2	Boring ID	B-5iSTa NE Abut.
County	Winnebago	Project Number	P-92-111-06
Route	I-39/US BYP 20	Structure Number	101-0215 PR
Section	(201-3)K & (4-1,5)R	Contract number	64C62
C _v calculations curve	square root	e calculations curve	square root

e Calculations

Increment	Increment	Loading	Ht.	MD	Adjusted	V	V/Vs	е	C _v X 10 ⁻⁴
	Duration	Ŭ			, Ht.**		Ŭ		
	min.	tsf	inches	inches	inches	cm ³		V/V _s -1	in²/min
Initial	N/A	0.050	0.7500	0.0000	0.7500	60.3	1.746	0.746	
1	409	0.250	0.7457	0.0012	0.7457	60.0	1.736	0.736	578
2	781	0.500	0.7419	0.0020	0.7419	59.7	1.727	0.727	613
3	415	1.000	0.7351	0.0030	0.7351	59.1	1.711	0.711	521
4	857	2.000	0.7189	0.0042	0.7189	57.8	1.674	0.674	416
5	407	4.000	0.6976	0.0057	0.6976	56.1	1.624	0.624	384
6	915	8.000	0.6763	0.0076	0.6763	54.4	1.574	0.574	434
7*	1466	4.000	0.6722	0.0064	0.6722	54.1	1.565	0.565	
8*	1390	2.000	0.6736	0.0053	0.6736	54.2	1.568	0.568	
9*	1345	1.000	0.6754	0.0044	0.6754	54.3	1.572	0.572	
10	411	2.000	0.6745	0.0050	0.6745	54.3	1.570	0.570	
11	970	4.000	0.6729	0.0060	0.6729	54.1	1.566	0.566	
12	1480	8.000	0.6698	0.0075	0.6698	53.9	1.559	0.559	
13	1291	16.000	0.6544	0.0102	0.6544	52.6	1.523	0.523	241
14	1378	32.000	0.6338	0.0144	0.6338	51.0	1.475	0.475	223
15*	0	16.000		0.0000					
16*	0	8.000		0.0000					
17*	0	4.000		0.0000					
18*	0	2.000		0.0000					
19*	0	0.500		0.0000					
20*	0	0.250		0.0000					
				0.0000					
				0.0000					
				0.0000					
Final	N/A	0.250	0.6291	0.0000	0.6291	51.3	1.485	0.485	

Lab Sample Test Results Lab Test Procedures Test Method: T 216 B Tare 75.6 gr. Wet+Tare 192.2 gr. Sample Condition: inundated Cons+Tare 184.6 gr. Inundation Pressure: .050 tsf Dry+Tare 167.9 gr. **Test Preparation:** Trimmed with cutting shoe Ws 92.2 gr. Lab Comments: 24.3 cm³ $W_w = V_w$ 34.6 cm³ Vs Initial Final Moisture content 26.4 18.3 95.4 Dry Unit Wt. 111.8

COMMENTS:

* For unload sequences, the sample height at the end of the load sequence is used instead of H₁₀₀.

** Machine deflection was accounted for in the development of the load verses deformation curves.

ATTACHMENT B

LABORATORY TEST RESULTS

Boring B-14iSTb (Lab Project No. 20203)

Shelby Tube Test Results

Boring N	lo.: <u>B-1</u>	4iSTb S	W Abut.	Rou	te: <u>I-39</u>	9/US BY	JS BYP 20			be Length/Diameter: <u>30 & 36-in./3.0-in.</u> Page: <u>1</u> of <u>2</u>
Station:	149	9+75 Ra	mp BD	Sect	tion: <u>(</u> 20	1-3)K &	(4-1,5)R		Gro	ound Surface Elev.: 818.12 ft. Date: 6-18-2021
Offset:	11.	0 ft. Rt.		Cou	nty: Wir	nnebago	ebago			gin Sampling Depth: 818.12 ft. Job No.: P-92-111-06
Latitude	42.	2199° (b	oring)	Stru	cture No.:	101-(101-0215 PR			ound Water Elev.: 801.1 ft. Soils Lab Project No.: 20203
Longitud	le: -89	.0086° (boring)	Con	tract No.:	64C6	62		Dri	lled by: W. Garza Prepared by: Kurt Schmuck
Sample No.	Depth (ft)	Elev. (ft)	Qu (tsf)	Moist. (%)	Unit Wt. (pcf)	c (psf)	Ф (deg)	c' (psf)	Φ' (deg)	Soil Type, Description and Observations
1-1	0.25	817.9		17.5	132.3					Brown Silty Clay Loam w/ small stones – hair roots
1-2	0.88	817.2	0.94	15.9	130.4					Brown Silty Clay Loam w/ small stones
1-3	1.50	816.6	1.79	14.0	135.7					Gray-brown Silty Clay Loam w/ oxidized Sand seams & pockets
1-4	2.12	816.0	2.99	14.6	136.5					Gray-brown Silty Clay Loam w/ oxidized Sand pockets
2-1	2.83	815.3		13.5						Gray Silty Clay Loam w/ Silt seams & pockets
2-2	3.46	814.7	UU Tx	13.2	135.2	2275	14.0	2333	16.1	Brown Silty Clay Loam w/ Silt pockets & seams, Sand pockets, isolated small gravel
2-3	4.08	814.0	Cons.	15.1	132.9					Brown Silty Clay Loam w/ Silt pockets & numerous Sand pockets – sm. gravel – Ig. rock
2-4	4.71	813.4	2.63	12.6	133.8					Brown Silty Clay w/ small stones – small oxidized Sandy Clay Loam layers
3-1	5.62	812.5	1.01	17.4	126.9					Gray-brown Silty Clay Loam w/ isolated Sand pockets
3-2	6.25	811.9	1.92	14.0	133.7					Same, top ¾, to reddish-brown Silty Clay Till
3-3	6.88	811.2	3.34	14.4	137.4					Reddish-brown Silty Clay Till
3-4	7.50	810.6								No Recovery
3-5	8.00	810.1								No Recovery
	↓	\rightarrow								Not Sampled
	↓	\rightarrow								\downarrow
	\downarrow	\downarrow								\downarrow
	\downarrow	↓								↓
	11.00	807.1								Not Sampled
4-1	11.42	806.7		16.0						Reddish-brown Silty Clay w/ Sandy Clay pockets & isolated stones
4-2	12.04	806.1	0.81	23.5	123.3					Dark gray Silty Clay, top ½, to dark gray clayey Silty Loam
4-3	12.67	805.5	Cons.	25.5	119.9					Dark gray clayey Silty Loam
4-4	13.29	804.8	UU Tx	19.9	127.8	395	3.0	338	17.7	Dark gray clayey Silty Loam w/ Silt streaks – Sand pockets lower 1/2
4-5	14.00	804.1								No Recovery
5-1	14.25	803.9		34.8						Gray-brown Silty Clay Loam - soft

The Unit Wt. column represents the Moist Unit Weight.

The Qu column represents the Unconfined Compressive Strength using AASHTO T 208.

The c and Φ column represents cohesion and friction angle for total stress using AASHTO T 296 (unconsolidated-undrained triaxial testing).

The c' and Φ ' column represents cohesion and friction angle for effective stress using either AASHTO T 297 (consolidated-undrained triaxial testing), or AASHTO T 296 with pore pressure measurement.

Shelby Tube Test Results

Boring N	lo.: <u>B-1</u>	4iSTb S	W Abut	Rou	te: <u>I-3</u>	9/US BY	P 20		Tul	e Length/Diameter: <u>30 & 36-in./3.0-in.</u> Page: <u>2</u> of <u>2</u>						
Station:	149	9+75 Ra	amp BD	Sec	tion: <u>(</u> 20	1-3)K &	(4-1,5)R		Gro	und Surface Elev.: <u>818.12 ft.</u> Date: <u>6-18-2021</u>						
Offset:	11.	0 ft. Rt.		Cou	nty: Wi	nnebago)		Be	in Sampling Depth: 818.12 ft. Job No.: P-92-111-06						
Latitude	42.	2199° (b	oring)	Stru	cture No.:	101-0	0215 PR		Ground Water Elev.: 801.1 ft. Soils Lab Project No.: 20							
Longitud	le: -89	.0086° (boring)	Con	tract No.:	64C6	62		Drilled by: W. Garza Prepared by: Kurt Schmuck							
Sample No.	Depth (ft)	Elev. (ft)	Qu (tsf)	Moist. (%)	Unit Wt. (pcf)	c (psf)	Φ (deg)	c' (psf)	Φ' (deg)	Soil Type, Description and Observations						
5-2	14.88	803.2	Cons.	30.5	111.1					Dark gray clayey Silty Loam – very soft – oxidized pockets & isolated organics						
5-3	15.50	802.6	UU Tx	22.6	125.7	255	1.0	196	15.5	Dark gray clayey Silty Loam w/ Silt streaks, isolated Sand pockets – sm. stones bot $\frac{1}{2}$						
5-4	16.12	802.0	0.65	19.5	128.0					Blue-gray Silty Clay Loam, top ¾, to brown Clay Loam Till						
5-5	17.00	801.1								No Recovery						
										End of Shelby Tube Sampling						

The Unit Wt. column represents the Moist Unit Weight.

The Qu column represents the Unconfined Compressive Strength using AASHTO T 208.

The c and Φ column represents cohesion and friction angle for total stress using AASHTO T 296 (unconsolidated-undrained triaxial testing).

The c' and Φ ' column represents cohesion and friction angle for effective stress using either AASHTO T 297 (consolidated-undrained triaxial testing), or AASHTO T 296 with pore pressure measurement.

Illinois Department of Transportation

 Route
 I-39/Bypass 20

 Section
 (201-3)K & (4-1,5)R

County Winnebago

Location

Job No.

Lab. No.		20203 1-2	20203 2-3	20203 3-3	20203 4-3
Station		149+75	<mark>149+75</mark>	149+75	<mark>149+75</mark>
Offset		11.00ft Rt	11.00ft Rt	11.00ft Rt	11.00ft Rt
Depth	ft	0.88	<mark>4.08</mark>	6.88	<mark>12.67</mark>
AASHTO Classification (AASHTO M 145)		A-6(7)	<mark>A-4(3)</mark>	A-6(5)	<mark>A-4(8)</mark>
Illinois Textural Classification		Silty Clay Loam	Loam	Clay Loam	Silty Loam
Gradation Passing - 1"	%	100	<mark>100</mark>	100	<mark>100</mark>
3/4"	%	100	100	100.00	100
1/2"	%	100	<mark>100</mark>	98.39	<mark>100</mark>
No. 4	%	99.87	<mark>99.81</mark>	96.02	<mark>100</mark>
No. 10	%	99.50	<mark>99.74</mark>	94.47	100.00
No. 20	%	98.81	<mark>99.59</mark>	92.40	<mark>99.94</mark>
No. 40	%	95.85	<mark>95.91</mark>	86.79	<mark>99.31</mark>
No. 100	%	77.01	<mark>67.06</mark>	60.07	<mark>95.04</mark>
No. 200	%	72.64	<mark>62.23</mark>	53.17	<mark>93.76</mark>
Sand (AASHTO T 88)	%	27.4	<mark>37.8</mark>	46.8	<mark>6.2</mark>
Silt (AASHTO T 88)	%	50.9	<mark>43.7</mark>	27.5	<mark>75.6</mark>
CLAY (AASHTO T 88)	%	21.8	<mark>18.5</mark>	25.6	<mark>18.2</mark>
Liquid Limit (AASHTO T 89)	%	28	<mark>23</mark>	29	<mark>29</mark>
Plasticity Index (AASHTO T 90)	%	13	9	15	9
Organic Matter Content	pcf				
Std. Dry Density (IL Mod AASHTO T 99)	%				
Optimum Moisture (IL Mod AASHTO T 99)					
Subgrade Support Rating	%	POOR	POOR	POOR	POOR
In situ Moisture		16	<mark>15</mark>	14	<mark>25</mark>

Soil Test Data

Illinois Department of Transportation

Route I-39/Bypass 20 Section (201-3)K & (4-1,5)R County Winnebago Location Job No. Lab. No. 20203 5-2 Station 149+75 Offset 11.00ft Rt <mark>14.88</mark> Depth ft AASHTO Classification (AASHTO M 145) A-4(7) Illinois Textural Classification Silty Clay Loam Gradation Passing - 1" % 100 3/4" % 100 1/2" % 100 % 99.91 No. 4 No. 10 % 99.78 99.42 No. 20 % 97.46 No. 40 % No. 100 % 84.95 82.10 No. 200 % 17.9 Sand (AASHTO T 88) % Silt (AASHTO T 88) % 61.1 21.0 CLAY (AASHTO T 88) % % 28 Liquid Limit (AASHTO T 89) 10 Plasticity Index (AASHTO T 90) % **Organic Matter Content** pcf Std. Dry Density (IL Mod AASHTO T 99) % Optimum Moisture (IL Mod AASHTO T 99) POOR Subgrade Support Rating % 31 In situ Moisture

d C DININIC 20 DV D A C C 8-11

District	2	Lab Project Number	20203	
County	Winnebago	Sample Number	2-3	
Route	I-39/US BYP 20	Boring ID	B-14iSTb	SW Abut.
Section	(201-3)K & (4-1,5)R	Boring Station	149+75	
Project Number	P-92-111-06	Boring Offset	11	ft RT of BL

Layer 1

Lab Project	20203								
Layer 1 Workshe	et								Page 2/2
Sample Numbe	er	2-3			Boring Sta	tion	149+75		
Machine Numb	er	5			Boring Off	set	11		
District		2			Boring ID		B-14iSTb		
County		Winnebago)		Project Nu	mber	P-92-111-	06	
Route		I-39/US BY	′P 20		Structure I	Number	101-0215	PR	
Section		(201-3)K &	(4-1,5)R		Contract n	umber	64C62		
C_v calculations cu	urve	square root			e calculatio	ns curve	square root		
e Calculations									
Increment	Increment	Loading	Ht.	MD	Adjusted	V	V/V _s	е	C _v X 10 ⁻⁴
	duration				ht.**				
	min.	tsf	in.	in.	inches	cm ³		V/V _s -1	in.²/min
Seating load	N/A	0.050	0.7500	0.0000	0.7500	60.3	1.370	0.370	
1	410	0.200	0.7491	0.0019	0.7491	60.3	1.369	0.369	109
2	782	0.400	0.7476	0.0028	0.7476	60.1	1.366	0.366	125
3	416	0.800	0.7450	0.0038	0.7450	59.9	1.361	0.361	246
4	858	1.600	0.7392	0.0051	0.7392	59.5	1.350	0.350	172
5	407	3.200	0.7325	0.0065	0.7325	58.9	1.338	0.338	290
6	916	6.430	0.7223	0.0085	0.7223	58.1	1.320	0.320	226
7*	1467	3.200	0.7211	0.0074	0.7211	58.0	1.317	0.317	
8*	1391	1.600	0.7218	0.0064	0.7218	58.1	1.319	0.319	
9*	1348	0.800	0.7225	0.0055	0.7225	58.1	1.320	0.320	
10	411	1.600	0.7224	0.0061	0.7224	58.1	1.320	0.320	
11	972	3.200	0.7220	0.0071	0.7220	58.1	1.319	0.319	
12	1483	6.430	0.7203	0.0086	0.7203	57.9	1.316	0.316	
13	1293	12.880	0.7121	0.0108	0.7121	57.3	1.301	0.301	221
14	1382	25.790	0.6996	0.0140	0.6996	56.3	1.278	0.278	213
15*	0	12.880		0.0000					
16*	0	6.430		0.0000					
17*	0	3.200		0.0000					
18*	0	1.600		0.0000					
19*	0	0.800		0.0000					
20*	0	0.200		0.0000					
				0.0000					
				0.0000					
				0.0000					
Final reading	N/A	0.200	0.6973	0.0000	0.6973	56.9	1.292	0.292	

Lab Sample Test Results

Lab Sample Test Re	sults			Lab Test Procedures	
Tare	76.3 gr.		Test Method	T 216 B	
Wet+Tare	206.4 gr.		Sample Condition	inundated	
Cons+Tare	204.5 gr.		Inundation pressure	.050 tsf	
Dry+Tare	191.7 gr.		Test Preparation	Trimmed with cutting shoe	
W _s	115.4 gr.		Lab Querrante		
$W_w = V_w$	14.7 cm	3	Lab Comments:		
V _s	44.0 cm	3			
	Initial	Final			
Moisture content	12.7	11.1			
Dry Unit Wt.	119.4	126.7			

COMMENTS:

* For unload sequences, the sample height at the end of the load sequence is used instead of H₁₀₀. ** Machine deflection was accounted for in the development of the load verses deformation curves. *** Water table was assumed to be at about an elevation of 804 ft.

Lab Project	20203		
Layer 2 Worksheet			Page 2/2
Sample Number	4-3	Boring Station	149+75
Machine Number	1	Boring Offset	11 ft RT of BL
District	2	Boring ID	B-14iSTb SW Abut.
County	Winnebago	Project Number	P-92-111-06
Route	I-39/US BYP 20	Structure Number	101-0215 PR
Section	(201-3)K & (4-1,5)R	Contract number	64C62
			
C _v calculations curve	log	e calculations curve	square root

C_v calculations curve

e Calculations

Increment	Increment	Loading	Ht.	MD	Adjusted	V	V/Vs	е	C _v X 10 ⁻⁴
	Duration				Ht.**				
	min.	tsf	inches	inches	inches	cm ³		V/V _s -1	in²/min
Initial	N/A	0.050	0.7500	0.0000	0.7500	60.3	1.683	0.683	
1	408	0.250	0.7419	0.0012	0.7419	59.7	1.664	0.664	233
2	781	0.500	0.7333	0.0020	0.7333	59.0	1.645	0.645	146
3	414	1.000	0.7222	0.0030	0.7222	58.1	1.620	0.620	174
4	857	2.000	0.7065	0.0042	0.7065	56.8	1.585	0.585	166
5	406	4.000	0.6898	0.0057	0.6898	55.5	1.548	0.548	161
6	913	8.000	0.6724	0.0076	0.6724	54.1	1.508	0.508	175
7*	1466	4.000	0.6678	0.0064	0.6678	53.7	1.498	0.498	
8*	1314	2.000	0.6687	0.0053	0.6687	53.8	1.500	0.500	
9*	1314	1.000	0.6698	0.0044	0.6698	53.9	1.503	0.503	
10	409	2.000	0.6699	0.0050	0.6699	53.9	1.503	0.503	
11	969	4.000	0.6690	0.0060	0.6690	53.8	1.501	0.501	
12	1466	8.000	0.6664	0.0075	0.6664	53.6	1.495	0.495	
13	1288	16.000	0.6542	0.0102	0.6542	52.6	1.468	0.468	160
14	1390	32.000	0.6356	0.0144	0.6356	51.1	1.426	0.426	183
15*	0	16.000		0.0000					
16*	0	8.000		0.0000					
17*	0	4.000		0.0000					
18*	0	2.000		0.0000					
19*	0	0.500		0.0000					
20*	0	0.250		0.0000					
				0.0000					
				0.0000					
				0.0000					
Final	N/A	0.250	0.6301	0.0000	0.6301	51.4	1.434	0.434	

Lab Sample Test Results

Lab Sample Test Re	sults			Lab Test Procedures
Tare	76.6 gr.		Test Method:	T 216 B
Wet+Tare	191.1 gr.		Sample Condition:	inundated
Cons+Tare	185.3 gr.		Inundation Pressure:	.050 tsf
Dry+Tare	169.8 gr.		Test Preparation:	Trimmed with cutting shoe
Ws	93.2 gr.			
$W_w = V_w$	21.3 cm	1 ³	Lab Comments:	
Vs	35.9 cm	1 ³		
	Initial	Final		
Moisture content	22.9	11.1		
Dry Unit Wt.	96.4	126.7		

COMMENTS:

* For unload sequences, the sample height at the end of the load sequence is used instead of H₁₀₀. ** Machine deflection was accounted for in the development of the load verses deformation curves.

*** Water table was assumed to be at about an elevation of 804 ft.

Layer 3

Lab Project	20203			
Layer 3 Worksheet			Page 2/2	2
Sample Number	5-2	Boring Station	149+75	
Machine Number	2	Boring Offset	11 ft RT of BL	
District	2	Boring ID	B-14iSTb SW Abut.	
County	Winnebago	Project Number	P-92-111-06	
Route	I-39/US BYP 20	Structure Number	101-0215 PR	
Section	(201-3)K & (4-1,5)R	Contract number	64C62	
C _v calculations curve	log	e calculations curve	square root	

e Calculations									
Increment	Increment	Loading	Height	Machine	Adjusted	V	V/V _s	е	C _v X 10 ⁻⁴
	duration			deflection	height**				
	(min.)	(tsf)	(inches)	(inches)	(inches)	(cm ³)		V/V _s -1	(in²/min.)
Initial		0.050	0.7500	0.0000	0.7500	60.3	1.748	0.748	
1	408	0.250	0.7320	0.0017	0.7320	58.9	1.706	0.706	109
2	781	0.500	0.7184	0.0028	0.7184	57.8	1.674	0.674	61
3	415	1.000	0.7022	0.0040	0.7022	56.5	1.637	0.637	71
4	857	2.000	0.6830	0.0056	0.6830	54.9	1.592	0.592	98
5	406	4.000	0.6647	0.0076	0.6647	53.5	1.549	0.549	118
6	914	8.000	0.6456	0.0099	0.6456	51.9	1.505	0.505	141
7*	1466	4.000	0.6400	0.0084	0.6400	51.5	1.492	0.492	
8*	1314	2.000	0.6406	0.0070	0.6406	51.5	1.493	0.493	
9*	1344	1.000	0.6419	0.0059	0.6419	51.6	1.496	0.496	
10	410	2.000	0.6419	0.0067	0.6419	51.6	1.496	0.496	
11	970	4.000	0.6410	0.0080	0.6410	51.6	1.494	0.494	
12	1479	8.000	0.6391	0.0099	0.6391	51.4	1.490	0.490	
13	1290	16.000	0.6265	0.0128	0.6265	50.4	1.460	0.460	150
14	1377	32.000	0.6077	0.0168	0.6077	48.9	1.416	0.416	178
15*	0	16.000		0.0000					
16*	0	8.000		0.0000					
17*	0	4.000		0.0000					
18*	0	2.000		0.0000					
19*	0	0.500		0.0000					
20*	0	0.250		0.0000					
				0.0000					
				0.0000					
				0.0000					
Final	N/A		0.6973	0.0000	0.6973	49.3	1.429	0.429	

Lab Sample Test Results Lab Test Procedures Test Method: Tare 76.2 gr. T 216 B Wet+Tare 190.7 gr. Sample Condition: inundated 179.6 gr. Inundated Pressure: .050 tsf Cons+Tare Dry+Tare 164.8 gr. **Test Preparation:** Trimmed with cutting shoe W_s 88.6 gr. 25.9 cm³ $W_w = V_w$ Lab Comments: 34.5 cm³ Vs Initial Final 29.2 16.7 Moisture content 112.1 Dry Unit Wt. 91.7

COMMENTS:

* For unload sequences, the sample height at the end of the load sequence is used instead of H₁₀₀.

** Machine deflection was accounted for in the development of the load verses deformation curves.

*** Water table was assumed to be at about an elevation of 804 ft.

ATTACHMENT C

KEG SETTLEMENT CALCULATIONS

I39 RAMP BD SETTLEMENT CALCULATIONS

					В	oring B4i								
Ν	ЛSE			Granular Em	nbankment									
B (ft)=	26.41			H(ft)=	5									
L (ft)=	119.60			γ (pcf)=	120									
H (ft)=	26.41			GWT (ft)=										
γ (pcf)=	125.00					-								
ΔP (psf)=	2496.70													
0.02	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	∆p (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	5	2.5	SILTY LOAM+SILTY CLAY	120	4.4	300.00	2234.10	2534.10	1320	OC-II	0.796	0.249	0.024	0.24
2	5	7.5	SILTY LOAM+SILTY CLAY	120	4.4	900.00	1829.75	2729.75	3960	OC-I	0.796	0.249	0.024	0.03
3	4	12	SILTY CLAY LOAM	125	1.2	1450.00	1560.15	3010.15	1740	OC-II	0.746	0.179	0.014	0.10
													Sp (ft)=	0.37
													Sp (in)=	4.46

					В	oring B6i								
N	1SE			Granular Eml	bankment									
B (ft)=	14.26			H(ft)=	5									
L (ft)=	119.60			γ (pcf)=	120									
H (ft)=	17.83			GWT (ft)=	22									
γ (pcf)=	125.00					_								
ΔP (psf)=	2012.18													
Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	∆p (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	3.75	1.875	SILTY CLAY LOAM+ SILTY LOAM	120	4.4	225.00	1750.96	1975.96	990	OC-II	0.796	0.249	0.024	0.19
2	3.75	5.625	SILTY CLAY LOAM+ SILTY LOAM	120	4.4	675.00	1378.27	2053.27	2970	OC-I	0.796	0.249	0.024	0.02
3	3.75	9.375	SILTY CLAY LOAM+SILTY CLAY TILL	120	1.2	1125.00	1125.91	2250.91	1350	OC-II	0.746	0.179	0.014	0.09
4	3.75	13.125	SILTY CLAY LOAM+SILTY CLAY TILL	125	1.2	1584.38	944.30	2528.68	1901.25	OC-II	0.746	0.179	0.014	0.05
													Sp (ft)=	0.35
													Sp (in)=	4.20

					Во	oring B11i								
Ν	/ISE			Granular Em	bankment		Addit	ional Fill						
B (ft)=	17.13			H(ft)=	5.0] [H(ft)=	4.0						
L (ft)=	71.16			γ (pcf)=	120.0		γ (pcf)=	125.0						
H (ft)=	25.41			GWT (ft)=	9.5									
γ (pcf)=	125.00					-								
ΔP (psf)=	2688.13													
Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	∆p (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	3.75	1.875	SILTY CLAY LOAM+SILTY LOAM	135	6.6	253.125	2360.69	2613.81	1670.63	OC-II	0.37	0.069	0.004	0.05
2	3.75	5.625	SILTY CLAY LOAM+SILTY LOAM	135	6.6	759.375	1875.33	2634.70	5011.88	OC-I	0.37	0.069	0.004	0.01
3	4	9.5	SANDY LOAM	120	1.4	1252.5	1525.44	2777.94	1753.50	OC-II	0.683	0.155	0.008	0.08
													Sp (ft)=	0.13

Sp (in)= 1.54

I39 RAMP BD SETTLEMENT CALCULATIONS

	Boring B12i													
Ν	/ISE			Granular Em	bankment	J	Addit	tional Fill						
B (ft)=	17.13			H(ft)=	5.0] [H(ft)=	3.2						
L (ft)=	71.16			γ (pcf)=	120.0] [γ (pcf)=	125.0						
H (ft)=	25.41			GWT (ft)=	9.5] –								
γ (pcf)=	125.00					_								
ΔP (psf)=	2588.13													
Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	∆p (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	3	1.5	SILTY LOAM + SANDY LOAM	135	6.6	202.5	2330.59	2533.09	1336.50	OC-II	0.37	0.069	0.004	0.05
2	3	4.5	SILTY LOAM + SANDY LOAM	135	6.6	607.5	1927.73	2535.23	4009.50	OC-I	0.37	0.069	0.004	0.01
3	3	7.5	SILTY LOAM	135	1.4	1012.5	1628.34	2640.84	1417.50	OC-II	0.683	0.155	0.008	0.08
4	3	10.5	SILTY LOAM	120	1.4	1395	1398.20	2793.20	1953.00	OC-II	0.683	0.155	0.008	0.05
													C / (4)	0.10

 Sp (ft)=
 0.18

 Sp (in)=
 2.12

					B	oring B13i								
N	1SE			Granular Emb	oankment									
B (ft)=	17.12			H(ft)=	5.0									
L (ft)=	114.50			γ (pcf)=	120.0									
H (ft)=	25.40			GWT (ft)=	9.5									
γ (pcf)=	125.00			-		_								
ΔP (psf)=	2187.50													
Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	∆p (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	4	2	SILTY CLAY LOAM + SANDY LOAM	135	6.6	270	1925.06	2195.06	1782.00	OC-II	0.37	0.069	0.004	0.03
2	4	6	SILTY CLAY LOAM + SANDY LOAM	135	1.4	810	1539.16	2349.16	1134.00	OC-II	0.683	0.155	0.008	0.12
3	4	10	SAND LOAM + SILTY LOAM	120	1.4	1320	1269.98	2589.98	1848.00	OC-II	0.683	0.155	0.008	0.06
4	4	14	SAND LOAM + SILTY LOAM	125	1.0	1810	1072.30	2882.30	1810.00	NC	0.748	0.192	0.007	0.09
5	4	18	SANDY LOAM + SANDY LOAM TILL	125	1.0	2185.2	921.48	3106.68	2185.20	NC	0.748	0.192	0.007	0.07
													Sp (ft)=	0.36
													Sp (in)=	4.32

					Bo	oring B15i								
N	/ISE			Granular Em	bankment		Addit	ional Fill						
B (ft)=	17.12			H(ft)=	5.0		H(ft)=	6.8						
L (ft)=	114.50			γ (pcf)=	120.0		γ (pcf)=	125.0						
H (ft)=	25.40			GWT (ft)=	9.5									
γ (pcf)=	125.00					-								
ΔP (psf)=	3037.50													
Layer	Hc (ft)	zcl (ft)	Descriptions	γ (pcf)	OCR	p'o (psf)	Δp (psf)	p'o + ∆p (psf)	p'c (psf)	CASE	eo	Cc	Cs	δ(ft)
1	3.5	1.75	LOAM +SANDY LOAM	135	6.6	236.25	2714.32	2950.57	1559.25	OC-II	0.37	0.069	0.004	0.06
2	3.5	5.25	LOAM +SANDY LOAM	135	6.6	708.75	2222.72	2931.47	4677.75	OC-I	0.37	0.069	0.004	0.01
3	3	8.5	SILT + SAND+ SANDY LOAM	120	1.4	1125	1889.48	3014.48	1575.00	OC-II	0.683	0.155	0.008	0.08
4	3	11.5	SILT + SAND+ SANDY LOAM	120	1.4	1360.2	1651.15	3011.35	1904.28	OC-II	0.683	0.155	0.008	0.06
5	3.5	14.75	SANDY LOAM TILL	125	1.0	1556.15	1445.48	3001.63	1556.15	NC	0.748	0.192	0.007	0.11
6	3.5	18.25	SANDY LOAM TILL	125	1.0	1775.25	1268.11	3043.36	1775.25	NC	0.748	0.192	0.007	0.09
													Sn (ft)=	0 40

Sp (in)= 4.80

I39 RAMP BD TIME RATE OF CONSOLIDATION CALCULATION

	Boring B4i								
Layer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)				
1	5	120	300.00	0.15	7.00E-03				
2	5	120	900.00	0.45	1.88E-03				
3	4	125	1450.00	0.73	5.50E-02				
	Time Rate		consolidatio	n					
		Without w	vick drains						
		Cv (in²/min)=	2.13E-02						
		H (ft)=	7						
		days	months	years					
	t50	46.03	1.53	0.13					
	t90	191.01	6.37	0.52					
		With wic	k drains						
	Cv	hor. (in²/min)=	4.26E-02						
	Triang	ular spacing(ft)=	5.0						
		de(ft)=	5.3		_				
		days	months	years					
	t50	25.9	0.86	0.07					
	t90	107.4	3.58	0.29					

		Borin	g B6i		
Layer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)
1	3.75	120	225.00	0.11	7.00E-03
2	3.75	120	675.00	0.34	2.50E-03
3	3.75	120	1125.00	0.56	6.00E-02
4	3.75	125	1584.38	0.79	5.50E-02
		Time Rate of o	consolidatio	n	
		Without w	ick drains		
		Cv (in²/min)=	3.11E-02		
		H (ft)=	15		_
		days	months	years	
	t50	144.58	4.82	0.40	
	t90	600.00	20.00	1.64	
		With wic	k drains		
	Cv hor		6.23E-02		
Triangular		ular spacing(ft)=	5.0		
		de(ft)=	5.3		_
		days	months	years	
	t50	17.7	0.59	0.05	
	t90	73.5	2.45	0.20	

	Boring B11i									
Layer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)					
1	3.75	135	253.125	0.13	1.13E-02					
2	3.75	135	759.375	0.38	1.25E-02					
3	4	120	1252.5	0.63	1.50E-02					
		Time Rate of co	onsolidation							
		Without wi	ck drains							
	Cv (in²/min)= 1.29E-02									
		H (ft)=	5.75	_						
		days	months	years						
	t50	51.19	1.71	0.14						
	t90	212.45	7.08	0.58						
		With wick	drains							
	Cv	hor. (in²/min)=	2.58E-02							
	Triang	ular spacing(ft)=	5.0							
de(ft)			5.3		_					
		days	months	years						
	t50	42.7	1.42	0.12						
	t90	177.1	5.90	0.49						

		Boring	B12i		
Layer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)
1	3	135	202.5	0.10	1.13E-02
2	3	135	607.5	0.30	1.13E-02
3	3	135	1012.5	0.51	1.50E-02
4	3	120	1395	0.70	1.55E-02
		Time Rate of co	onsolidation		
		Without wi	Without wick drains		
		Cv (in²/min)=	1.33E-02		
		H (ft)=	6		_
		days	months	years	
	t50	54.29	1.81	0.15	
	t90	225.30	7.51	0.62	
		With wick	drains		
	Cv	hor. (in²/min)=	2.65E-02		
	Triangular spacing(ft)= 5.0				
		de(ft)=	5.3		
		days	months	years	
	t50	41.6	1.39	0.11	
l I	t90	172.5	5.75	0.47	

I39 RAMP BD TIME RATE OF CONSOLIDATION CALCULATION

		Boring	g B13i		
Layer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)
1	4	135	270	0.14	1.13E-02
2	4	135	810	0.41	1.70E-02
3	4	120	1320	0.66	1.50E-02
4	4	125	1810	0.91	6.50E-03
5	4	125	2185.2	1.09	8.00E-03
		Time Rate of o	consolidatio	n	
		Without w	ick drains		
		Cv (in²/min)=	1.16E-02		
		H (ft)=	10		
		days	months	years	
	t50	173.16	5.77	0.47	
	t90	718.61	23.95	1.97	
	With				
Cv hor. (in²/mir			2.31E-02		
	Triang	ular spacing(ft)=	5.0		
		de(ft)=	5.3		
		days	months	years	
	t50	47.7	1.59	0.13	
	t90	198.1	6.60	0.54	

		Boring	B15i					
ayer	Hc (ft)	γ (pcf)	p'o (psf)	p'o (tsf)	Cv (in2/min)			
1	3.5	135	236.25	0.12	1.13E-02			
2	3.5	135	708.75	0.35	1.13E-02			
3	3	120	1125	0.56	1.88E-02			
4	3	120	1360.2	0.68	2.38E-02			
5	3.5	125	1556.15	0.78	2.50E-02			
6	3.5	125	1775.25	0.89	2.88E-02			
		Time Rate of co	onsolidation					
	Without wick drains							
		Cv (in²/min)=	1.98E-02					
		H (ft)=	20					
		days	months	years				
	t50	404.21	13.47	1.11				
	t90	1677.47	55.92	4.60				
		With wick	drains					
	Cv	hor. (in²/min)=	3.96E-02					
	Triang	ular spacing(ft)=	5.0					
		de(ft)=	5.3					
		days	months	years				
	t50	27.9	0.93	0.08				
	t90	115.6	3.85	0.32				

EXHIBIT G

PILE LENGTH/PILE TYPE

Г

SUBSTRUCTURE====================================	North Abut	ment
REFERENCE BORING ====================================	B-02i	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	839.61	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	837.61	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	:==	ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
418 KIPS	418 KIPS	230 KIPS	59 FT.

TOTAL FACTORED SUBSTRUCTURE LOAD ========== 3864 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)======= 48.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 2

TOP ELEV. OF LIQUEF. (so layers above apply DD) ========

3.967 FT.

ft

0.983 SQFT. Unplugged Pile End Bearing Area========

5.800 FT. 0.108 SQFT.

BOT.			NOMINAL PLUGGED			NOMINAL UNPLUG'D				FACTORED	FACTORED				
OF		UNCONF.	S.P.T.	GRANULAR	0.05			0.05	51/5 5 5 6		NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	(FT.)	(TSF)	(BLOWS)	DESCRIPTION	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGIH (FT.)
832 61	5.00	1.50	(======		19.1	1 =/	39.7	27.9	(30.2	30	0	0	17	7
827.61	5.00	1.50			19.1	20.7	58.8	27.9	2.3	58.0	58	0 0	õ	32	12
822.61	5.00	1.50			19.1	20.7	77.9	27.9	2.3	85.9	78	0	0	43	17
818.65	3.96	1.50			15.1	20.7	99.9	22.1	2.3	108.8	100	0	0	55	21
815.15	3.50	2.00	13		16.2	27.6	102.3	23.6	3.0	130.9	102	0	0	56	24
812.65	2.50	1.00	7		7.0	13.8	114.8	10.3	1.5	141.8	115	0	0	63	27
810.15	2.50	1.40	12		9.1	19.3	141.8	13.3	2.1	157.1	142	0	0	78	29
807.65	2.50	2.70	11		14.1	37.2	136.6	20.6	4.1	175.6	137	0	0	75	32
805.15	2.50	1.30	10		8.6	17.9	135.6	12.6	2.0	187.1	136	0	0	75	34
801.65	3.50	0.60	5		6.4	8.3	142.9	9.3	0.9	196.5	143	0	0	79	38
800.15	1.50		5	Very Fine Silty Sand	0.5	9.2	147.1	0.7	1.0	197.6	147	0	0	81	39
796.65	3.50		7	Very Fine Silty Sand	1.5	12.9	183.5	2.2	1.4	203.6	183	0	0	101	43
793.15	2.50		20	Hard Till	23	47.0	170.0	2.5	3.Z 4.2	205.1	170	0	0	97 85	44
787.65	5.00		8	Hard Till	1.7	14.7	157.9	2.5	1.6	208.5	158	0 0	õ	87	52
781.65	6.00		9	Hard Till	2.3	16.5	388.7	3.4	1.8	237.0	237	0	0	130	58
781.15	0.50			Limestone	49.4	245.0	438.1	72.3	26.8	309.2	309	0	0	170	58.5
780.65	0.50			Limestone	49.4	245.0	487.5	72.3	26.8	381.5	381	0	0	210	59
780.15	0.50			Limestone	49.4	245.0	537.0	72.3	26.8	453.7	454	θ	θ	250	59.5
779.65	0.50			Limestone	49.4	245.0	586.4	72.3	26.8	526.0	526	θ	θ	289	60
779.15	0.50			Limestone	49.4	245.0	635.8	72.3	26.8	598.2	598	θ	θ	329	60.5
778.65	0.50			Limestone	49.4	245.0	685.2	72.3	26.8	670.5	670	θ	θ	-369	61
778.15	0.50			Limestone	49.4	245.0	734.6	72.3	26.8	742.7	735	θ	θ	404	61.5
777.65	0.50			Limestone	49.4	245.0	784.0	72.3	26.8	815.0	784	θ	θ	431	-62
777.15	0.50			Limestone	49.4	245.0	833.4	72.3	26.8	887.2	833	θ	θ	458	62.5
776.65	0.50			Limestone		245.0			26.8						

Г

SUBSTRUCTURE====================================	South Abu	tment
REFERENCE BORING ====================================	B-13i	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	836.52	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	834.52	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	=====	ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
418 KIPS	391 KIPS	215 KIPS	50 FT.

3864 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)======== 48.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 2

Approx. Factored Loading Applied per pile at 3 ft. Cts ========= 120.75 KIPS

Plugged Pile Perimeter==================================

3.967 FT.

Unplugged Pile Perimeter============ 5.800 FT. 0.983 SQFT. Unplugged Pile End Bearing Area======= 0.108 SQFT.

BOT.					NON		GED	NO		IG'D		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR	Non	INTAL I LOO	IGED	non		02	NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
829.52	5.00	1.50			19.1		39.7	27.9		30.2	30	0	0	17	7
824.52	5.00	1.50			19.1	20.7	58.8	27.9	2.3	58.0	58	0	0	32	12
819.52	5.00	1.50			19.1	20.7	77.9	27.9	2.3	85.9	78	0	0	43	17
019.10	0.34	1.50			1.3	20.7	83.3	1.9	2.3	00.3	83	0	0	40	17
010.00	3.50	1.80	11		15.1	24.8	92.9	12.1	2.7	109.8	93	0	0	51	21
910.69	2.50	1.40	12		3.1	13.0	140.9	10.3	2.1	122.0	137	0	0	75	23
808.18	2.50	3.70	10		17.0	51.0	140.0	25.0	5.6	157.0	11/	0	0	63	20
805.68	2.50	0.50	3		39	69	126 5	5.7	0.8	164.5	127	0	0	70	31
803.18	2.50	1 10	q		7.6	15.2	128 1	11.1	17	174.9	128	0	0	70	33
800.68	2.50	1.10	5	Hard Till	0.5	9.2	132.3	0.8	1.0	176.1	132	0	Ő	73	36
798.18	2.50		7	Hard Till	0.8	12.9	237.8	1.1	1.4	188.7	189	0	0	104	38
795.68	2.50		64	Very Fine Silty Sand	13.9	117.6	167.2	20.4	12.9	199.8	167	0	0	92	41
793.18	2.50		18	Hard Till	1.9	33.1	178.4	2.8	3.6	203.6	178	0	0	98	43
790.68	2.50		23	Hard Till	2.5	42.3	180.9	3.6	4.6	207.3	181	0	0	99	46
789.68	1.00		23	Hard Till	1.0	42.3	225.3	1.5	4.6	213.5	213	0	0	117	47
787.18	2.50		35	Sandy Gravel	10.6	85.7	395.2	15.5	9.4	246.4	246	0	0	136	49
786.68	0.50			Limestone	49.4	245.0	444.6	72.3	26.8	318.7	319	0	0	1/5	49.8
786.18	0.50			Limestone	49.4	245.0	494.0	72.3	26.8	390.9	391	0	0	215	50.3
795.00	0.50			Limestone	49.4	245.0	502.9	72.3	20.8	403.2 525.4	4 03 535	0	Đ Đ	200	00.0 51.2
784 68	0.50			Limestone	49.4	245.0	642.2	72.3	20.0	607 7	608	0	0	334	51.8
784 18	0.50			Limestone	49.4	245.0	691 7	72.3	26.8	679.9	680	д Д	Д Д	374	52.3
783.68	0.50			Limestone	49.4	245.0	741.1	72.3	26.8	752.2	741	д Д	Ð	408	52.8
783.18	0.50			Limestone	49.4	245.0	790.5	72.3	26.8	824.4	790	Ð	Ð	435	53.3
782.68	0.50			Limestone		245.0			26.8			-	-		
EXHIBIT H

RECOMMENDED GROUND IMPROVEMENT LOCATIONS

EXHIBIT I

SLOPE/W SLOPE STABILITY

ANALYSIS

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Gravelly Sand	Mohr-Coulomb	120	0	38
	Limestone	Mohr-Coulomb	150	10,000	45
	Sand	Mohr-Coulomb	115	0	34
	Sandy Loam I	Mohr-Coulomb	120	1,200	0
	Sandy Loam II	Mohr-Coulomb	120	700	0
	Sandy Loam III	Mohr-Coulomb	120	1,900	0
	Silty Clay Loam	Mohr-Coulomb	120	1,150	0
	Silty Loam	Mohr-Coulomb	110	2,100	0

I-39 - US 20 Ramp BD East Abutment Boring B-2i (STA 144+00.00, Left Slope) Short Term Condition (Undrained)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Limestone	Mohr-Coulomb	150	10,000	45
	Sand	Mohr-Coulomb	115	500	34
	Sandy Loam Till	Mohr-Coulomb	125	2,000	0
	Silt	Mohr-Coulomb	110	1,400	0
	Silty Clay Loam I	Mohr-Coulomb	120	2,000	0
	Silty Clay Loam II	Mohr-Coulomb	120	2,000	0
	Silty Loam I	Mohr-Coulomb	120	1,000	0
	Silty Loam II	Mohr-Coulomb	120	600	0

I-39 - US 20 Ramp BD East Abutment Boring B-2i (STA 144+00.00, RIght Slope) Short Term Condition (Undrained)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Limestone	Mohr-Coulomb	150	10,000	45
	Sand	Mohr-Coulomb	115	500	34
	Sandy Loam Till	Mohr-Coulomb	125	2,000	0
	Silt	Mohr-Coulomb	110	1,400	0
	Silty Clay Loam I	Mohr-Coulomb	120	2,000	0
	Silty Clay Loam II	Mohr-Coulomb	120	2,000	0
	Silty Loam I	Mohr-Coulomb	120	1,000	0
	Silty Loam II	Mohr-Coulomb	120	600	0